Scilab Website | Contribute with GitLab | Mailing list archives | ATOMS toolboxes
Scilab Online Help
5.5.1 - Français

Change language to:
English - 日本語 - Português - Русский

Please note that the recommended version of Scilab is 2024.1.0. This page might be outdated.
See the recommended documentation of this function

Aide de Scilab >> Algèbre Lineaire > Eigenvalue and Singular Value > spec

spec

valeurs propres d'une matrice

Séquence d'appel

evals=spec(A)
[X,diagevals]=spec(A)

evals=spec(A,E)
[al,be]=spec(A,E)
[al,be,Z]=spec(A,E)
[al,be]=spec(A,E)
[al,be,Q,Z]=spec(A,E)

Paramètres

A

matrice carrée réelle ou complexe

E

matrice carrée réelle ou complexe de même dimensions que A

evals

vecteur réel ou complexe

diagevals

matrice carrée diagonale réelle ou complexe (les éléments diagonaux sont les valeurs propres)

al

vecteur réel ou complexe, al./be donnes les valeurs propres

be

vecteur réel ou complexe, al./be donnes les valeurs propres

X

matrice carrée inversible réelle ou complexe, matrices des vecteurs propres.

Q

matrice carrée inversible réelle ou complexe, matrices des vecteurs propres à gauche.

Z

atrice carrée inversible réelle ou complexe, matrices des vecteurs propres à droite.

Description

spec(A)

evals=spec(A) retourne dans le vecteur evals les valeurs propres de A.

[evals,X] =spec(A) retourne de plus les vecteurs propres (s'ils existent). Voir Aussi bdiag

spec(A,B)

evals=spec(A,E) retourne le spectre du faisceau s E - A, c'est à dire les racines du déterminant de la matrice de polynômes s E - A.

[al,be] = spec(A,E) retourne le spectre du faisceau s E - A, c'est à dire les racines du déterminant de la matrice de polynômes s E - A. Les valeurs propres sont données par al./be. Si be(i) = 0 la iième valeur propres est à l'infini. (Pour E = eye(A), al./be est spec(A)).

[al,be,Z] = spec(A,E) retourne de plus la matrice Z des vecteurs propres généralisés à droite.

[al,be,Q,Z] = spec(A,E) retourne de plus les matrices Q et Z des vecteurs propres généralisés à droite et à gauche.

Pour les grosses matrices pleines / creuses, vous pouvez utiliser le module Arnoldi.

Exemples

// MATRIX EIGENVALUES
A=diag([1,2,3]);X=rand(3,3);A=inv(X)*A*X;
spec(A)

x=poly(0,'x');
pol=det(x*eye()-A)
roots(pol)

[S,X]=bdiag(A);
clean(inv(X)*A*X)

// PENCIL EIGENVALUES
A=rand(3,3);
[al,be,Z] = spec(A,eye(A));al./be
clean(inv(Z)*A*Z)  //displaying the eigenvalues (generic matrix)
A=A+%i*rand(A);E=rand(A);
roots(det(%s*E-A))   //complex case

Voir aussi

  • poly — définition d'un polynôme
  • det — déterminant
  • gspec — valeurs propres d'un faisceau de matrices (obsolete)
  • schur — [ordered] Schur decomposition of matrix and pencils
  • bdiag — bloc-diagonalisation, vecteurs propres généralisés
  • colcomp — compression de colonnes, noyau
  • dsaupd — Interface for the Implicitly Restarted Arnoldi Iteration, to compute approximations to a few eigenpairs of a real and symmetric linear operator This function is obsolete. Please use eigs
  • dnaupd — Interface for the Implicitly Restarted Arnoldi Iteration, to compute approximations to a few eigenpairs of a real linear operator This function is obsolete. Please use eigs

Fonctions Utilisées

Le calcul des valeurs propres des matrices est basé sur les routines Lapack DGEEV and ZGEEV.

Report an issue
<< pbig Eigenvalue and Singular Value sva >>

Copyright (c) 2022-2024 (Dassault Systèmes)
Copyright (c) 2017-2022 (ESI Group)
Copyright (c) 2011-2017 (Scilab Enterprises)
Copyright (c) 1989-2012 (INRIA)
Copyright (c) 1989-2007 (ENPC)
with contributors
Last updated:
Thu Oct 02 13:54:30 CEST 2014