Scilab Website | Contribute with GitLab | Mailing list archives | ATOMS toolboxes
Scilab Online Help
5.5.1 - Français

Change language to:
English - 日本語 - Português - Русский

Please note that the recommended version of Scilab is 2025.0.0. This page might be outdated.
See the recommended documentation of this function

Aide de Scilab >> Statistiques > Cumulated Distribution Functions > cdfchn

cdfchn

fonction de répartition de la distribution du chi-deux non centrée

Séquence d'appel

[P,Q]=cdfchn("PQ",X,Df,Pnonc)
[X]=cdfchn("X",Df,Pnonc,P,Q);
[Df]=cdfchn("Df",Pnonc,P,Q,X)
[Pnonc]=cdfchn("Pnonc",P,Q,X,Df)

Paramètres

P,Q,X,Df,Pnonc

5 vecteurs réels de même taille.

P,Q (Q=1-P)

L'intégrale de 0 à X de la distribution. En entrée : [0, 1-1E-16).

X

Borne supérieure d'intégration En entrée : [0, +infini). En recherche : [0,1E300]

Df

Degrés de liberté de la densité En entrée : (0, +infini). En recherche : [ 1E-300, 1E300]

Pnonc

paramètre de décentrage En entrée : [0, +infini). En recherche : [0,1E4]

Description

Étant donnés les autres, calcule un paramètre de la distribution du chi-deux non-centré.

La formule 26.4.25 de "Abramowitz and Stegun, Handbook of Mathematical Functions (1966)" est utilisée pour le calcul de la fonction de répartition.

Le calcul des autres paramètres implique une recherche d'une valeur conduisant à la valeur désirée pour P. La recherche dépend de la monotonicité de P par rapport aux autres paramètres.

Le temps de calcul est proportionnel au paramètre de décentrage. La plage de recherche est bornée par 10,000 pour limiter le temps de calcul (pouvant devenir énorme pour des grandes valeurs de Pnonc).

Il arrive dans certains cas que les degrés de liberté ne soient pas des entiers. Scilab affiche alors un avertissement.

Tiré de la bibliothèque DCDFLIB: Library of Fortran Routines for Cumulative Distribution Functions, Inverses, and Other Parameters (February, 1994) Barry W. Brown, James Lovato and Kathy Russell. The University of Texas.

Exemples

Dans l'exemple suivant, on calcule la probabilité de l'événement x=0.1 pour la fonction de distribution du chi-deux non-centrée avec Df=2 et Pnonc=5.

Pnonc = 5;
Df = 2;
x = 0.1;
// Expected : P = 0.0042567 and Q = 1-P
[P, Q] = cdfchn("PQ", x, Df, Pnonc)

Voir aussi

  • cdfbet — fonction de répartition de la distribution Beta
  • cdfbin — fonction de répartition de la distribution binomiale
  • cdfchi — fonction de répartition de la distribution du chi-deux
  • cdff — fonction de répartition de la distribution de Fisher
  • cdffnc — fonction de répartition de la distribution de Fisher non centrée
  • cdfgam — fonction de répartition de la distribution gamma
  • cdfnbn — fonction de répartition de la distribution binomiale négative
  • cdfnor — fonction de répartition de la distribution normale
  • cdfpoi — fonction de répartition de la distribution de Poisson
  • cdft — fonction de répartition de la distribution de Student
Report an issue
<< cdfchi Cumulated Distribution Functions cdff >>

Copyright (c) 2022-2024 (Dassault Systèmes)
Copyright (c) 2017-2022 (ESI Group)
Copyright (c) 2011-2017 (Scilab Enterprises)
Copyright (c) 1989-2012 (INRIA)
Copyright (c) 1989-2007 (ENPC)
with contributors
Last updated:
Thu Oct 02 13:54:33 CEST 2014