- Aide Scilab
- Statistiques
- cdfbet
- cdfbin
- cdfchi
- cdfchn
- cdff
- cdffnc
- cdfgam
- cdfnbn
- cdfnor
- cdfpoi
- cdft
- median
- st_deviation
- center
- wcenter
- cmoment
- correl
- covar
- ftest
- ftuneq
- geomean
- harmean
- iqr
- mad
- mean
- meanf
- moment
- msd
- mvvacov
- nancumsum
- nand2mean
- nanmax
- nanmean
- nanmeanf
- nanmedian
- nanmin
- nanstdev
- nansum
- nfreq
- pca
- perctl
- princomp
- quart
- regress
- sample
- samplef
- samwr
- show_pca
- stdevf
- strange
- tabul
- thrownan
- trimmean
- variance
- variancef
Please note that the recommended version of Scilab is 2025.0.0. This page might be outdated.
See the recommended documentation of this function
show_pca
Visualization of principal components analysis results
Calling Sequence
show_pca(lambda,facpr,N)
Arguments
- lambda
is a p x 2 numerical matrix. In the first column we find the eigenvalues of V, where V is the correlation p x p matrix and in the second column are the ratios of the corresponding eigenvalue over the sum of eigenvalues.
- facpr
are the principal factors: eigenvectors of V. Each column is an eigenvector element of the dual of
R^p
.- N
Is a 2x1 integer vector. Its coefficients point to the eigenvectors corresponding to the eigenvalues of the correlation matrix
p
byp
ordered by decreasing values of eigenvalues. IfN
. is missing, we supposeN=[1 2]
..
Description
This function visualize the pca results.
See Also
Authors
Carlos Klimann
Bibliography
Saporta, Gilbert, Probabilites, Analyse des Donnees et Statistique, Editions Technip, Paris, 1990.
<< samwr | Statistiques | stdevf >> |