Scilab Website | Contribute with GitLab | Mailing list archives | ATOMS toolboxes

Change language to:
English - 日本語 - Português

Please note that the recommended version of Scilab is 6.1.1. This page might be outdated.
See the recommended documentation of this function

Aide Scilab >> Statistiques > cdfgam

cdfgam

fonction de répartition de la distribution gamma

Séquence d'appel

[P,Q]=cdfgam("PQ",X,Shape,Scale)
[X]=cdfgam("X",Shape,Scale,P,Q)
[Shape]=cdfgam("Shape",Scale,P,Q,X)
[Scale]=cdfgam("Scale",P,Q,X,Shape)

Paramètres

P,Q,X,Shape,Scale

5 vecteurs réels de même taille.

P,Q (Q=1-P)

L'intégrale de 0 à X de la distribution gamma En entrée : [0,1].

X

Borne supérieure d'intégration En entrée : [0, +infini). En recherche : [0,1E300]

Shape

Le paramètre de forme de la distribution En entrée : (0, +infini). En recherche : [1E-300,1E300]

Scale

le paramètre d'échelle de la distribution En entrée : (0, +infini). En recherche : (1E-300,1E300]

Description

Étant donnés les autres, calcule un paramètre de la distribution gamma.

La fonction de répartition (P) est calculée directement par le code associé à

DiDinato, A. R. and Morris, A. H. Computation of the incomplete gamma function ratios and their inverse. ACM Trans. Math. Softw. 12 (1986), 377-393.

Le calcul des autres paramètres implique une recherche d'une valeur conduisant à la valeur désirée pour P. La recherche dépend de la monotonicité de P par rapport aux autres paramètres.

La distribution gamma est proportionnelle à T**(SHAPE - 1) * EXP(- SCALE * T)

Tiré de la bibliothèque DCDFLIB: Library of Fortran Routines for Cumulative Distribution Functions, Inverses, and Other Parameters (February, 1994) Barry W. Brown, James Lovato and Kathy Russell. The University of Texas.

<< cdffnc Statistiques cdfnbn >>

Copyright (c) 2022-2023 (Dassault Systèmes)
Copyright (c) 2017-2022 (ESI Group)
Copyright (c) 2011-2017 (Scilab Enterprises)
Copyright (c) 1989-2012 (INRIA)
Copyright (c) 1989-2007 (ENPC)
with contributors
Last updated:
Thu Mar 03 11:00:12 CET 2011