- Scilab help
- CACSD
- abcd
- abinv
- arhnk
- arl2
- arma
- arma2p
- armac
- armax
- armax1
- arsimul
- augment
- balreal
- bilin
- black
- bode
- bstap
- cainv
- calfrq
- canon
- ccontrg
- chart
- cls2dls
- colinout
- colregul
- cont_frm
- cont_mat
- contr
- contrss
- copfac
- csim
- ctr_gram
- dbphi
- dcf
- ddp
- des2ss
- des2tf
- dhinf
- dhnorm
- dscr
- dsimul
- dt_ility
- dtsi
- equil
- equil1
- evans
- feedback
- findABCD
- findAC
- findBD
- findBDK
- findR
- findx0BD
- flts
- fourplan
- frep2tf
- freq
- freson
- fspecg
- fstabst
- g_margin
- gainplot
- gamitg
- gcare
- gfare
- gfrancis
- gtild
- h2norm
- h_cl
- h_inf
- h_inf_st
- h_norm
- hallchart
- hankelsv
- hinf
- imrep2ss
- inistate
- invsyslin
- kpure
- krac2
- lcf
- leqr
- lft
- lin
- linf
- linfn
- linmeq
- lqe
- lqg
- lqg2stan
- lqg_ltr
- lqr
- ltitr
- m_circle
- macglov
- markp2ss
- minreal
- minss
- mucomp
- narsimul
- nehari
- nicholschart
- noisegen
- nyquist
- obs_gram
- obscont
- observer
- obsv_mat
- obsvss
- p_margin
- parrot
- pfss
- phasemag
- ppol
- prbs_a
- projsl
- reglin
- repfreq
- ric_desc
- ricc
- riccati
- routh_t
- rowinout
- rowregul
- rtitr
- sensi
- sgrid
- show_margins
- sident
- sm2des
- sm2ss
- sorder
- specfact
- ss2des
- ss2ss
- ss2tf
- st_ility
- stabil
- svplot
- sysfact
- syssize
- tf2des
- tf2ss
- time_id
- trzeros
- ui_observer
- unobs
- zeropen
- zgrid
Please note that the recommended version of Scilab is 2025.0.0. This page might be outdated.
See the recommended documentation of this function
routh_t
Routh's table
Calling Sequence
r=routh_t(p) r=routh_t(h [,k])
Arguments
- p
a real polynomial
- h
a real SISO transfer system
- k
a real polynomial or a scalar
- r
a matrix
Description
r=routh_t(p)
computes Routh's table of the
polynomial h
.
r=routh_t(h,k)
computes Routh's table of
denominator of the system described by transfer matrix SISO
h
with the feedback by the gain
k
.
If k=poly(0,'k')
we will have a polynomial matrix
with dummy variable k
, formal expression of the Routh
table.
Examples
s=%s; P=5*s^3-10*s^2+7*s+20; routh_t(P) //transfer function with formal feedback routh_t((1+s)/P,poly(0,'k')) // One of the coefficients in the polynomial equals zero P1=2*s^3-24*s+32; routh_t(P1) // A row full of zeros P2=s^4-6*s^3+10*s^2-6*s+9; routh_t(P2)
Bibliography
http://controls.engin.umich.edu/wiki/index.php/RouthStability
http://www.jdotec.net/s3i/TD_Info/Routh/Routh.pdf
Comments on the Routh-Hurwitz criterion, Shamash, Y.,Automatic Control, IEEE T.A.C Volume 25, Issue 1, Feb 1980 Page(s): 132 - 133
<< riccati | CACSD | rowinout >> |