intl
Cauchy integral along a circular arc
Syntax
y = intl(a, b, z0, r, f) y = intl(a, b, z0, r, f, abserr) y = intl(a, b, z0, r, f, abserr, relerr)
Arguments
- z0
- a complex number
- a, b
- two real numbers
- r
- positive real number
- f
- identifier of the function to be integrated (type 13 or 130).
- abserr, relerr
- real scalars: absolute and relative numerical tolerances.
Default values are
1.d-13
and1d-8
.
Description
If f
is a complex-valued function,
intl(a,b,z0,r,f)
computes the integral of
f(z)dz
along the curve in the complex plane defined by
z0 + r.*exp(%i*t)
for a<=t<=b
.(part of the circle with center z0
and radius
r
with phase between a
and
b
).
Examples
function y=f(z) y = z^(3 + %pi * %i) endfunction intl(1, 2, 1+%i, 3, f)
See also
History
Version | Description |
2024.0.0 | Default abserr and relerr values
standardized: 1d-13 and 1d-8 instead of
%eps and 1d-12 . |
Report an issue | ||
<< intg | Equations différentielles | intsplin >> |