Please note that the recommended version of Scilab is 2025.0.0. This page might be outdated.
See the recommended documentation of this function
eigs
calculates largest eigenvalues and eigenvectors of matrices
Calling Sequence
d = eigs(A [,B [,k [,sigma [,opts]]]]) [d, v] = eigs(A [,B [,k [,sigma [,opts]]]]) d = eigs(Af, n [,B [,k [,sigma [,opts]]]]) [d, v] = eigs(Af, n [,B [,k [,sigma [,opts]]]])
Arguments
- A
a full or sparse, real or complex, symmetric or non-symmetric square matrix
- Af
a function
- n
a scalar, defined only if
A
is a function- B
a sparse, real or complex, square matrix with same dimensions as
A
- k
an integer, number of eigenvalues to be computed
- sigma
a real scalar or a string of length 2
- opts
a structure
- d
a real or complex eigenvalues vector or diagonal matrix (eigenvalues along the diagonal)
- v
real or complex eigenvector matrix
Description
The purpose of the eigs function is to compute the largest eigenvalues of sparse, large matrices.
- d = eigs(A) or d = eigs(Af, n)
solves the eigenvalue problem
A * v = lambda * v
. This calling returns a vectord
containing the six largest magnitude eigenvalues.A
is either a square matrix, which can be symmetric or non-symmetric, real or complex, full or sparse.A
should be represented by a functionAf
. In this instance, a scalarn
designating the length of the vector argument, must be defined. It must have the following header :function y=A(x)
This function
Af
must return one of the four following expressions :- A * x
if sigma is not given or is a string other than 'SM'.
- A \ x
if sigma is 0 or 'SM'.
- (A - sigma * I) \ x
for the standard eigenvalue problem, where I is the identity matrix.
- (A - sigma * B) \ x
for the generalized eigenvalue problem.
- A * x
- [d, v] = eigs(A) or [d, v] = eigs(Af, n)
returns a diagonal matrix
d
containing the six largest magnitude eigenvalues on the diagonal.v
is a n by six matrix whose columns are the six eigenvectors corresponding to the returned eigenvalues.- d = eigs(A, B)
solves the generalized eigenvalue problem
A * v = lambda * B * v
with positive, definite matrixB
.if
B
is not specified,B = []
is used.if
B
is specified,B
must be the same size as A.
- d = eigs(A, B, k)
returns in vector
d
thek
eigenvalues. Ifk
is not specified,k = min(n, 6)
, where n is the row number of A.- d = eigs(A, B, k, sigma)
returns in vector
d
thek
eigenvalues determined bysigma
.sigma
can be either a real or complex including 0 scalar or string. If sigma is a string of length 2, it takes one of the following values :'LM'
compute thek
largest in magnitude eigenvalues (by default).'SM'
compute thek
smallest in magnitude eigenvalues (same as sigma = 0).'LA'
compute thek
Largest Algebraic eigenvalues, only for real symmetric problems.'SA'
compute thek
Smallest Algebraic eigenvalues, only for real symmetric problems.'BE'
computek
eigenvalues, half from each end of the spectrum, only for real symmetric problems.'LR'
compute thek
eigenvalues of Largest Real part, only for real non-symmetric or complex problems.'SR'
compute thek
eigenvalues of Smallest Real part, only for real non-symmetric or complex problems.'LI'
compute thek
eigenvalues of Largest Imaginary part, only for real non-symmetric or complex problems.'SI'
compute thek
eigenvalues of Smallest Imaginary part, only for real non-symmetric or complex problems.
- d = eigs(A, B, k, sigma, opts)
If the
opts
structure is specified, different options can be used to compute thek
eigenvalues :tol
required convergence tolerance. By default,
tol = %eps
.maxiter
maximum number of iterations. By default,
maxiter = 300
.ncv
number of Lanzcos basis vectors to use. For real non-symmetric problems, the
ncv
value must be greater or equal than2 * k + 1
and, by default,ncv = min(max(2 * k + 1, 20), nA)
. For real symmetric or complex problems,ncv
must be greater or equal2 * k
and, by default,ncv = min(max(2 * k, 20), nA)
withnA = size(A, 2)
.resid
starting vector whose contains the initial residual vector, possibly from a previous run. By default,
resid
is a random initial vector.cholB
if
chol(B)
is passed rather thanB
. By default,cholB
is %f.isreal
if
Af
is given,isreal
can be defined. By default,isreal
is %t. This argument must not be indicated ifA
is a matrix.issym
if
Af
is given,issym
can be defined. By default,issym
is %f. This argument must not be indicated ifA
is a matrix.
References
This function is based on the ARPACK package written by R. Lehoucq, K. Maschhoff, D. Sorensen, and C. Yang.
DSAUPD and DSEUPD routines for real symmetric problems,
DNAUPD and DNEUPD routines for real non-symmetric problems.
ZNAUPD and ZNEUPD routines for complex problems.
Example for real symmetric problems
clear opts A = diag(10*ones(10,1)); A(1:$-1,2:$) = A(1:$-1,2:$) + diag(6*ones(9,1)); A(2:$,1:$-1) = A(2:$,1:$-1) + diag(6*ones(9,1)); B = eye(10,10); k = 8; sigma = 'SM'; opts.cholB = %t; d = eigs(A) [d, v] = eigs(A) d = eigs(A, B, k, sigma) [d, v] = eigs(A, B, k, sigma) d = eigs(A, B, k, sigma, opts) [d, v] = eigs(A, B, k, sigma, opts) // With sparses AS = sparse(A); BS = sparse(B); d = eigs(AS) [d, v] = eigs(AS) d = eigs(AS, BS, k, sigma) [d, v] = eigs(AS, BS, k, sigma) d = eigs(AS, BS, k, sigma, opts) [d, v] = eigs(AS, BS, k, sigma, opts) // With function clear opts function y=fn(x) y = A * x; endfunction opts.isreal = %t; opts.issym = %t; d = eigs(fn, 10, [], k, 'LM', opts) function y=fn(x) y = A \ x; endfunction d = eigs(fn, 10, [], k, 'SM', opts) function y=fn(x) y = (A - 4 * eye(10,10)) \ x; endfunction d = eigs(fn, 10, [], k, 4, opts)
Example for real non-symmetric problems
clear opts A = diag(10*ones(10,1)); A(1:$-1,2:$) = A(1:$-1,2:$) + diag(6*ones(9,1)); A(2:$,1:$-1) = A(2:$,1:$-1) + diag(-6*ones(9,1)); B = eye(10,10); k = 8; sigma = 'SM'; opts.cholB = %t; d = eigs(A) [d, v] = eigs(A) d = eigs(A, B, k, sigma) [d, v] = eigs(A, B, k, sigma) d = eigs(A, B, k, sigma, opts) [d, v] = eigs(A, B, k, sigma, opts) // With sparses AS = sparse(A); BS = sparse(B); d = eigs(AS) [d, v] = eigs(AS) d = eigs(AS, BS, k, sigma) [d, v] = eigs(AS, BS, k, sigma) d = eigs(AS, BS, k, sigma, opts) [d, v] = eigs(AS, BS, k, sigma, opts) // With function clear opts function y=fn(x) y = A * x; endfunction opts.isreal = %t; opts.issym = %f; d = eigs(fn, 10, [], k, 'LM', opts) function y=fn(x) y = A \ x; endfunction d = eigs(fn, 10, [], k, 'SM', opts) function y=fn(x) y = (A - 4 * eye(10,10)) \ x; endfunction d = eigs(fn, 10, [], k, 4, opts)
Example for complex problems
clear opts A = diag(10*ones(10,1) + %i * ones(10,1)); A(1:$-1,2:$) = A(1:$-1,2:$) + diag(6*ones(9,1)); A(2:$,1:$-1) = A(2:$,1:$-1) + diag(-6*ones(9,1)); B = eye(10,10); k = 8; sigma = 'LM'; opts.cholB = %t; d = eigs(A) [d, v] = eigs(A) d = eigs(A, B, k, sigma) [d, v] = eigs(A, B, k, sigma) d = eigs(A, B, k, sigma, opts) [d, v] = eigs(A, B, k, sigma, opts) // With sparses AS = sparse(A); BS = sparse(B); d = eigs(AS) [d, v] = eigs(AS) d = eigs(AS, BS, k, sigma) [d, v] = eigs(AS, BS, k, sigma) d = eigs(AS, BS, k, sigma, opts) [d, v] = eigs(AS, BS, k, sigma, opts) // With function clear opts function y=fn(x) y = A * x; endfunction opts.isreal = %f; opts.issym = %f; d = eigs(fn, 10, [], k, 'LM', opts) function y=fn(x) y = A \ x; endfunction d = eigs(fn, 10, [], k, 'SM', opts) function y=fn(x) y = (A - 4 * eye(10,10)) \ x; endfunction d = eigs(fn, 10, [], k, 4, opts)
See Also
- spec — eigenvalues of matrices and pencils
History
Version | Description |
5.4.0 | Function introduced. Deprecates dnaupd, dneupd, dsaupd, dseupd, znaupd and zneupd. |
Report an issue | ||
<< dseupd | ARnoldi PACKage (ARPACK binding) | znaupd >> |