Scilab-Branch-6.1-GIT
- Справка Scilab
- Signal Processing
- Filters
- How to design an elliptic filter
- analpf
- buttmag
- casc
- cheb1mag
- cheb2mag
- ell1mag
- eqfir
- eqiir
- faurre
- ffilt
- filt_sinc
- filter
- find_freq
- frmag
- fsfirlin
- group
- hilbert
- iir
- iirgroup
- iirlp
- kalm
- lev
- levin
- lindquist
- remez
- remezb
- sgolay
- sgolaydiff
- sgolayfilt
- srfaur
- srkf
- sskf
- syredi
- system
- trans
- wfir
- wfir_gui
- wiener
- wigner
- window
- yulewalk
- zpbutt
- zpch1
- zpch2
- zpell
Please note that the recommended version of Scilab is 2025.0.0. This page might be outdated.
See the recommended documentation of this function
system
observation update
Syntax
[x1,y]=system(x0,f,g,h,q,r)
Arguments
- x0
input state vector
- f
system matrix
- g
input matrix
- h
Output matrix
- q
input noise covariance matrix
- r
output noise covariance matrix
- x1
output state vector
- y
output observation
Description
define system function which generates the next observation given the old state. System recursively calculated
x1=f*x0+g*u y=h*x0+v
where u
is distributed N(0,q)
and v
is distribute N(0,r)
.
Examples
// initialize state statistics // (mean and err. variance) m0=[10 10]'; p0=[2 0;0 2]; // create system f=[1.1 0.1;0 0.8]; g=[1 0;0 1]; h=[1 0;0 1]; // noise statistics q=[.03 0.01;.01 0.03]; r=2*eye(2); // initialize system process rand("seed",2); rand("normal"); p0c=chol(p0); x0=m0+p0c'*rand(ones(m0)); yt=[]; //initialize kalman filter xke0=m0;pk0=p0; // initialize err. variance ecv=[pk0(1,1) pk0(2,2)]'; [x1,y]=system(x0,f,g,h,q,r)
Report an issue | ||
<< syredi | Filters | trans >> |