Scilab Home page | Wiki | Bug tracker | Forge | Mailing list archives | ATOMS | File exchange
Please login or create an account
Scilab-Branch-6.1-GIT
Change language to: English - Français - Português - 日本語 -
Справка Scilab >> Linear Algebra > eigen > projspec

# projspec

spectral operators

### Syntax

`[S,P,D,i]=projspec(A)`

### Arguments

A

square matrix

S, P, D

square matrices

i

integer (index of the zero eigenvalue of `A`).

### Description

Spectral characteristics of `A` at 0.

`S` = reduced resolvent at 0 (`S` = -Drazin_inverse(`A`)).

`P` = spectral projection at 0.

`D` = nilpotent operator at 0.

`index` = index of the 0 eigenvalue.

One has `(s*eye()-A)^(-1) = D^(i-1)/s^i +... + D/s^2 + P/s - S - s*S^2 -...` around the singularity s=0.

### Examples

```deff('j=jdrn(n)','j=zeros(n,n);for k=1:n-1;j(k,k+1)=1;end')
A = blockdiag(jdrn(3),jdrn(2),rand(2,2));
X = rand(7,7);
A = X*A*inv(X);
[S,P,D,index] = projspec(A);
index   //size of J-block
trace(P)  //sum of dimensions of J-blocks
A*S-(eye()-P)
norm(D^index,1)```

### See also

• coff — resolvent (cofactor method)

### Comments

Add a comment:
Please login to comment this page.

 Report an issue << pbig eigen psmall >>

 Scilab EnterprisesCopyright (c) 2011-2017 (Scilab Enterprises)Copyright (c) 1989-2012 (INRIA)Copyright (c) 1989-2007 (ENPC)with contributors Last updated:Mon Jan 03 14:39:53 CET 2022