Scilab-Branch-6.1-GIT
Please note that the recommended version of Scilab is 2026.0.0. This page might be outdated.
See the recommended documentation of this function
qmr
quasi minimal residual method with preconditioning
Syntax
[x, flag, err, iter, res] = qmr(A, b, x0, M1, M2, maxi, tol) [x, flag, err, iter, res] = qmr(A,Ap,b,x0,M1,M1p,M2,M2p,maxi,tol) // deprecated
Arguments
- A
- Square dense or sparse matrix of size n-by-n, or function:
- If A is a function which returns
A*x, it must have the following header :function y = A ( x ) - If A is a function which returns
A*xorA'*xdepending on a option t, it must have the following header :function y = A(x, t)- If
t = "notransp": the function returnsA*x. - If
t = "transp": the function returnsA'*x.
- If
- If A is a function which returns
- Ap
- function returning
A'*x. It must have the following header :function y = Ap(x) - b
- right hand side vector
- x0
- initial guess vector (default: zeros(n,1)).
- M1
- left preconditioner : matrix or function (In the first case, default: eye(n,n)).
If
M1is a function, it returns either,- only
M1*x, or M1*xorM1'*x, depending ont.
- only
- M1p
- must only be provided when
M1is a function returningM1*x. In this caseM1pis the function which returnsM1'*x. - M2
- right preconditioner : matrix or function (In the first case, default: eye(n,n)).
If
M2is a function, it returns either- only
M2*x, or M2*xorM2'*xdepending on an optiont.
- only
- M2p
- must only be provided when
M2is a function returningM2*x. In this caseM2pis the function which returnsM2'*x - maxi
- maximum number of iterations (default: n)
- tol
- error tolerance (default: 1000*%eps)
- x
- solution vector.
- flag
flag=0:qmrconverged to the desired tolerance withinmaxiiterations.flag=1: no convergence up tomaxiiterations,-7 < flag < 0: A breakdown occurred because one of the scalar quantities calculated was equal to zero.
- res
- residual vector.
- err
- final residual norm.
- iter
- number of iterations performed.
Description
Solves the linear system Ax=b using the Quasi Minimal Residual Method
with preconditioning.
Examples
If A is a matrix:
A = [ 94 0 0 0 0 28 0 0 32 0 0 59 13 5 0 0 0 10 0 0 0 13 72 34 2 0 0 0 0 65 0 5 34 114 0 0 0 0 0 55 0 0 2 0 70 0 28 32 12 0 28 0 0 0 0 87 20 0 33 0 0 0 0 0 28 20 71 39 0 0 0 10 0 0 32 0 39 46 8 0 32 0 0 0 12 33 0 8 82 11 0 0 65 55 0 0 0 0 11 100]; b = ones(10,1); [x,flag,err,iter,res] = qmr(A, b) [x,flag,err,iter,res] = qmr(A, b, zeros(10,1), eye(10,10), eye(10,10), 10, 1d-12)
If A is a function:
function y=Atimesx(x, t) A = [ 94 0 0 0 0 28 0 0 32 0 0 59 13 5 0 0 0 10 0 0 0 13 72 34 2 0 0 0 0 65 0 5 34 114 0 0 0 0 0 55 0 0 2 0 70 0 28 32 12 0 28 0 0 0 0 87 20 0 33 0 0 0 0 0 28 20 71 39 0 0 0 10 0 0 32 0 39 46 8 0 32 0 0 0 12 33 0 8 82 11 0 0 65 55 0 0 0 0 11 100]; if (t == 'notransp') then y = A*x; elseif (t == 'transp') then y = A'*x; end endfunction b = ones(10,1); [x,flag,err,iter,res] = qmr(Atimesx, b) [x,flag,err,iter,res] = qmr(Atimesx, b, zeros(10,1), eye(10,10), eye(10,10), 10, 1d-12)
OR
function y=funA(x) A = [ 94 0 0 0 0 28 0 0 32 0 0 59 13 5 0 0 0 10 0 0 0 13 72 34 2 0 0 0 0 65 0 5 34 114 0 0 0 0 0 55 0 0 2 0 70 0 28 32 12 0 28 0 0 0 0 87 20 0 33 0 0 0 0 0 28 20 71 39 0 0 0 10 0 0 32 0 39 46 8 0 32 0 0 0 12 33 0 8 82 11 0 0 65 55 0 0 0 0 11 100]; y = A*x endfunction function y=funAp(x) A = [ 94 0 0 0 0 28 0 0 32 0 0 59 13 5 0 0 0 10 0 0 0 13 72 34 2 0 0 0 0 65 0 5 34 114 0 0 0 0 0 55 0 0 2 0 70 0 28 32 12 0 28 0 0 0 0 87 20 0 33 0 0 0 0 0 28 20 71 39 0 0 0 10 0 0 32 0 39 46 8 0 32 0 0 0 12 33 0 8 82 11 0 0 65 55 0 0 0 0 11 100]; y = A'*x endfunction b = ones(10,1); [x,flag,err,iter,res] = qmr(funA, funAp, b) [x,flag,err,iter,res] = qmr(funA, funAp, b, zeros(10,1), eye(10,10), eye(10,10), 10, 1d-12)
If A is a matrix, M1 and M2 are functions:
A = [ 94 0 0 0 0 28 0 0 32 0 0 59 13 5 0 0 0 10 0 0 0 13 72 34 2 0 0 0 0 65 0 5 34 114 0 0 0 0 0 55 0 0 2 0 70 0 28 32 12 0 28 0 0 0 0 87 20 0 33 0 0 0 0 0 28 20 71 39 0 0 0 10 0 0 32 0 39 46 8 0 32 0 0 0 12 33 0 8 82 11 0 0 65 55 0 0 0 0 11 100]; b = ones(10,1); function y=M1timesx(x, t) M1 = eye(10,10); if(t=="notransp") then y = M1*x; elseif (t=="transp") then y = M1'*x; end endfunction function y=M2timesx(x, t) M2 = eye(10,10); if(t=="notransp") then y = M2*x; elseif (t=="transp") then y = M2'*x; end endfunction [x, flag, err, iter, res] = qmr(A, b, zeros(10,1), M1timesx, M2timesx, 10, 1d-12)
OR
A = [ 94 0 0 0 0 28 0 0 32 0 0 59 13 5 0 0 0 10 0 0 0 13 72 34 2 0 0 0 0 65 0 5 34 114 0 0 0 0 0 55 0 0 2 0 70 0 28 32 12 0 28 0 0 0 0 87 20 0 33 0 0 0 0 0 28 20 71 39 0 0 0 10 0 0 32 0 39 46 8 0 32 0 0 0 12 33 0 8 82 11 0 0 65 55 0 0 0 0 11 100]; b = ones(10,1); function y=funM1(x) M1 = eye(10,10); y = M1*x; endfunction function y=funM1p(x) M1 = eye(10,10); y = M1'*x; endfunction function y=funM2(x) M2 = eye(10,10); y = M2*x; endfunction function y=funM2p(x) M2 = eye(10,10); y = M2'*x; endfunction [x,flag,err,iter,res] = qmr(A, b, zeros(10,1), funM1, funM1p, funM2, funM2p, 10, 1d-12)
If A, M1, M2 are functions:
History
| Versão | Descrição |
| 5.4.0 | Calling qmr(A, Ap) is deprecated. qmr(A) should be used instead. |
| Report an issue | ||
| << gmres | Linear Equations (Iterative Solvers) | chfact >> |