Scilab-Branch-6.1-GIT
Please note that the recommended version of Scilab is 2025.0.0. This page might be outdated.
See the recommended documentation of this function
qmr
quasi minimal residual method with preconditioning
Syntax
[x, flag, err, iter, res] = qmr(A, b, x0, M1, M2, maxi, tol) [x, flag, err, iter, res] = qmr(A,Ap,b,x0,M1,M1p,M2,M2p,maxi,tol) // deprecated
Arguments
- A
- Square dense or sparse matrix of size n-by-n, or function:
- If A is a function which returns
A*x
, it must have the following header :function y = A ( x )
- If A is a function which returns
A*x
orA'*x
depending on a option t, it must have the following header :function y = A(x, t)
- If
t = "notransp"
: the function returnsA*x
. - If
t = "transp"
: the function returnsA'*x
.
- If
- If A is a function which returns
- Ap
- function returning
A'*x
. It must have the following header :function y = Ap(x)
- b
- right hand side vector
- x0
- initial guess vector (default: zeros(n,1)).
- M1
- left preconditioner : matrix or function (In the first case, default: eye(n,n)).
If
M1
is a function, it returns either,- only
M1*x
, or M1*x
orM1'*x
, depending ont
.
- only
- M1p
- must only be provided when
M1
is a function returningM1*x
. In this caseM1p
is the function which returnsM1'*x
. - M2
- right preconditioner : matrix or function (In the first case, default: eye(n,n)).
If
M2
is a function, it returns either- only
M2*x
, or M2*x
orM2'*x
depending on an optiont
.
- only
- M2p
- must only be provided when
M2
is a function returningM2*x
. In this caseM2p
is the function which returnsM2'*x
- maxi
- maximum number of iterations (default: n)
- tol
- error tolerance (default: 1000*%eps)
- x
- solution vector.
- flag
flag
=0:qmr
converged to the desired tolerance withinmaxi
iterations.flag
=1: no convergence up tomaxi
iterations,-7 < flag < 0
: A breakdown occurred because one of the scalar quantities calculated was equal to zero.
- res
- residual vector.
- err
- final residual norm.
- iter
- number of iterations performed.
Description
Solves the linear system Ax=b
using the Quasi Minimal Residual Method
with preconditioning.
Examples
If A is a matrix:
A = [ 94 0 0 0 0 28 0 0 32 0 0 59 13 5 0 0 0 10 0 0 0 13 72 34 2 0 0 0 0 65 0 5 34 114 0 0 0 0 0 55 0 0 2 0 70 0 28 32 12 0 28 0 0 0 0 87 20 0 33 0 0 0 0 0 28 20 71 39 0 0 0 10 0 0 32 0 39 46 8 0 32 0 0 0 12 33 0 8 82 11 0 0 65 55 0 0 0 0 11 100]; b = ones(10,1); [x,flag,err,iter,res] = qmr(A, b) [x,flag,err,iter,res] = qmr(A, b, zeros(10,1), eye(10,10), eye(10,10), 10, 1d-12)
If A is a function:
function y=Atimesx(x, t) A = [ 94 0 0 0 0 28 0 0 32 0 0 59 13 5 0 0 0 10 0 0 0 13 72 34 2 0 0 0 0 65 0 5 34 114 0 0 0 0 0 55 0 0 2 0 70 0 28 32 12 0 28 0 0 0 0 87 20 0 33 0 0 0 0 0 28 20 71 39 0 0 0 10 0 0 32 0 39 46 8 0 32 0 0 0 12 33 0 8 82 11 0 0 65 55 0 0 0 0 11 100]; if (t == 'notransp') then y = A*x; elseif (t == 'transp') then y = A'*x; end endfunction b = ones(10,1); [x,flag,err,iter,res] = qmr(Atimesx, b) [x,flag,err,iter,res] = qmr(Atimesx, b, zeros(10,1), eye(10,10), eye(10,10), 10, 1d-12)
OR
function y=funA(x) A = [ 94 0 0 0 0 28 0 0 32 0 0 59 13 5 0 0 0 10 0 0 0 13 72 34 2 0 0 0 0 65 0 5 34 114 0 0 0 0 0 55 0 0 2 0 70 0 28 32 12 0 28 0 0 0 0 87 20 0 33 0 0 0 0 0 28 20 71 39 0 0 0 10 0 0 32 0 39 46 8 0 32 0 0 0 12 33 0 8 82 11 0 0 65 55 0 0 0 0 11 100]; y = A*x endfunction function y=funAp(x) A = [ 94 0 0 0 0 28 0 0 32 0 0 59 13 5 0 0 0 10 0 0 0 13 72 34 2 0 0 0 0 65 0 5 34 114 0 0 0 0 0 55 0 0 2 0 70 0 28 32 12 0 28 0 0 0 0 87 20 0 33 0 0 0 0 0 28 20 71 39 0 0 0 10 0 0 32 0 39 46 8 0 32 0 0 0 12 33 0 8 82 11 0 0 65 55 0 0 0 0 11 100]; y = A'*x endfunction b = ones(10,1); [x,flag,err,iter,res] = qmr(funA, funAp, b) [x,flag,err,iter,res] = qmr(funA, funAp, b, zeros(10,1), eye(10,10), eye(10,10), 10, 1d-12)
If A is a matrix, M1 and M2 are functions:
A = [ 94 0 0 0 0 28 0 0 32 0 0 59 13 5 0 0 0 10 0 0 0 13 72 34 2 0 0 0 0 65 0 5 34 114 0 0 0 0 0 55 0 0 2 0 70 0 28 32 12 0 28 0 0 0 0 87 20 0 33 0 0 0 0 0 28 20 71 39 0 0 0 10 0 0 32 0 39 46 8 0 32 0 0 0 12 33 0 8 82 11 0 0 65 55 0 0 0 0 11 100]; b = ones(10,1); function y=M1timesx(x, t) M1 = eye(10,10); if(t=="notransp") then y = M1*x; elseif (t=="transp") then y = M1'*x; end endfunction function y=M2timesx(x, t) M2 = eye(10,10); if(t=="notransp") then y = M2*x; elseif (t=="transp") then y = M2'*x; end endfunction [x, flag, err, iter, res] = qmr(A, b, zeros(10,1), M1timesx, M2timesx, 10, 1d-12)
OR
A = [ 94 0 0 0 0 28 0 0 32 0 0 59 13 5 0 0 0 10 0 0 0 13 72 34 2 0 0 0 0 65 0 5 34 114 0 0 0 0 0 55 0 0 2 0 70 0 28 32 12 0 28 0 0 0 0 87 20 0 33 0 0 0 0 0 28 20 71 39 0 0 0 10 0 0 32 0 39 46 8 0 32 0 0 0 12 33 0 8 82 11 0 0 65 55 0 0 0 0 11 100]; b = ones(10,1); function y=funM1(x) M1 = eye(10,10); y = M1*x; endfunction function y=funM1p(x) M1 = eye(10,10); y = M1'*x; endfunction function y=funM2(x) M2 = eye(10,10); y = M2*x; endfunction function y=funM2p(x) M2 = eye(10,10); y = M2'*x; endfunction [x,flag,err,iter,res] = qmr(A, b, zeros(10,1), funM1, funM1p, funM2, funM2p, 10, 1d-12)
If A, M1, M2 are functions:
History
Версия | Описание |
5.4.0 | Calling qmr(A, Ap) is deprecated. qmr(A) should be used instead. |
Report an issue | ||
<< gmres | Linear Equations (Iterative Solvers) | Sparse Matrix Manipulation >> |