Scilab Website | Contribute with GitLab | Mailing list archives | ATOMS toolboxes
Scilab Online Help
6.1.1 - English

Change language to:
Français - 日本語 - Português - Русский

Please note that the recommended version of Scilab is 2025.0.0. This page might be outdated.
See the recommended documentation of this function

Scilab Help >> Elementary Functions > Discrete mathematics > nchoosek

nchoosek

Computes binomial numbers (n,k) = numbers of combinations

Syntax

b = nchoosek(n, k)
logb = nchoosek(n, k, logFormat)
[logb, b] = nchoosek(n, k, logFormat)
[logb, b] = nchoosek(n, k)

Arguments

n, k
arrays of positive decimal integers. If both n and k are not scalars, they must have the same size.
b
array of positive decimal integers, with the size of the biggest array n or k : Cnk
logb
array of positive decimal numbers, with the size of b: log10(Cnk)
logFormat
single word "log10" | "10.mant". "log10" by default.
  • If "log10" is used, logb returns log10(b).

  • If "10.mant" is used, then logb returns int(log10(b)) + 10^(log10(b)-int(log10(b)))/10: The 10-exponent of b is the logb integer part, while its fractional part directly shows the mantissa/10 of b, in [1.0, 10)/10.

Description

For every (n(i),k(i)) element-wise pair, nchoosek() computes the number of ki-element subsets of an ni-element set. It is mathematically defined by C(n,k) = n! / [ k! (n-k)! ]. The implementation, though, uses the βeta function.

If n < 0, or k < 0, or k > n, then an error is generated.

Note about floating point accuracy

Despite n! overflows for n>170, nchoosek(n,k) is computed within almost the %eps relative accuracy for n much beyond 170.

For any given n value, we know that Cnk is maximal for k=n/2. Scilab computes b = nchoosek(n,n/2) close to the %eps relative accuracy for n up to 1029. Beyond this value, b=%inf is returned.

This narrow n=1029 limit can be overcome by computing log10(Cnk) and returning it through the second output argument logb. This allows to use still bigger n values, and to get some valid information about the exponent and the mantissa of the true result.

However, we must keep in mind that beyond n = 1/%eps ~ 4.1015, the numerical step between consecutive integers m and m+1 stored as floating point numbers become > 1. Then n*(n-1) is numerically equal to n*n, and getting reliable results becomes harder.

The integer part of logb represents the exponent (of 10) of Cnk, whereas its fractional part is the log10 of its mantissa. When the integer part of logb increases, the more digits it takes among the 16 available ones in floating point encoding, the less remain to encode the mantissa. Then, knowing the mantissa of Cnk with at least one significant digit requires Cnk < 101014.

Relative accuracy on logb: As a rule of thumb, except for special k cases, the relative uncertainty on logb is of the order of %eps * n / k.

Examples

Simple examples

c = nchoosek(4, 1)
c = nchoosek(5, 0)
c = nchoosek([4 5], [1 0])
--> c = nchoosek(4, 1)
 c  =
   4.

--> c = nchoosek(5, 0)
 c  =
   1.

--> c = nchoosek([4 5], [1 0])
 c  =
   4.   1.
nchoosek(10, 0:10)
nchoosek(4:12, 4)
--> nchoosek(10, 0:10)
 ans  =
   1.  10.  45.  120.  210.  252.  210.  120.  45.  10.  1.

--> nchoosek(4:12, 4)
 ans  =
   1.  5.  15.  35.  70.  126.  210.  330.  495.

For big values:

exact = 2.050083865033972676e307;
c = nchoosek(10000, 134)
relerror = abs(c-exact)/exact
--> c = nchoosek(10000, 134)
 c  =
   2.05D+307

--> relerror = abs(c-exact)/exact
 relerror  =
   7.959D-14

The exact result for Cnk(n, 2) is n.(n-1)/2. Now, for values n > 1/%eps = 4e15, (n-1) is numerically identical to n. In no way we can expect an exact result below, but rather n^2/2 :

n = 1e20;
c = nchoosek(n, 2)
c / (n*n/2) - 1    // Relative error wrt the expected numerical value
--> c = nchoosek(n, 2)
 c  =
   5.000D+39

--> c /(n*n/2) - 1
 ans  =
  -6.661D-15

In logarithmic formats:

[logb, b] = nchoosek(10000, 1234);  [b, logb]
logb = nchoosek(10000, 1234, "10.mant")

[logb, b] = nchoosek(1000, 500);
logb2 = nchoosek(1000, 500, "10.mant");
[b, logb, logb2]
logb = nchoosek(1000, 500, "log10")
--> [logb, b] = nchoosek(10000, 1234);  [b, logb]
 ans  =
   Inf   1620.803261

--> logb = nchoosek(10000, 1234, "10.mant")
 logb  =
   1620.635713      // 6.35713D+1620

--> [logb, b] = nchoosek(1000, 500);
--> logb2 = nchoosek(1000, 500, "10.mant");
--> [b, logb, logb2]
 ans  =
   2.7029D+299   299.4318272   299.2702882

--> logb = nchoosek(1000, 500, "log10")
 logb  =
   299.4318272

Drawing nchoosek(n,k) on the main floating point domain, up to 10300 :

function ax=drawCnk(n)
    // Preparing data
    [N,K] = meshgrid(n);
    noOp = K>N;
    K(noOp) = 0;
    [logC, C] = nchoosek(N, K);
    C(noOp) = %nan;
    if max(n)<2000, logC = log10(C), end

    // Surface of Cnk data
    surf(N, K, logC);
    gce().color_mode = -2; // hidding the mesh
    plot2d([0 n],[0 n/2]);
    gce().children.data(:,3) = max(logC(logC<>%inf))

    // Axes settings
    xgrid(25,1,7)
    ax = gca();
    set(ax, "view","2d", "tight_limits",["on" "on" "off"], "grid_position","foreground");
    xtitle("","","","");
    ax.margins(2) = 0.05;

    // Color bar
    colorbar();
    cb = gce();
    cb.y_ticks.labels = msprintf("$\\Large 10^{%s}$\n", cb.y_ticks.labels);
    title(cb,"$C_n^k$", "fontsize",3)
endfunction

clf
drawlater

// Figure settings
f = gcf();
f.color_map = jetcolormap(100);
//f.axes_size = [840 570];

// Main plot
ax = drawCnk(0:10:1500); sca(ax);
xtitle("nchoosek(n, k)","n","k","$C_n^k$");
set([ax.title ax.x_label ax.y_label ax.z_label], "font_size",4);
xstring(1250, 450, "Overflow")
gce().font_size = 4;

// Inset
xsetech([0.11 0.11 0.37 0.42]);
ax = drawCnk(0:106);
ax.sub_ticks = [3 3];
gce().sub_ticks(2) = 4;

drawnow

Going beyond, in logarithmic mode :

// /!\ : The drawCnk() function used here is defined in the previous example.

clf
drawlater

// Figure settings
f = gcf();
f.color_map = jetcolormap(100);
//f.axes_size = [840 570];

// Main plot
ax = drawCnk(0:10000:1e6); sca(ax);
xtitle("nchoosek(n, k)","n","k","$C_n^k$");
set([ax.title ax.x_label ax.y_label ax.z_label], "font_size",4);

// Inset
xsetech([0.12 0.11 0.37 0.42]);
ax = drawCnk(0:1000:1e5);
ax.sub_ticks = [3 3];
gce().sub_ticks(2) = 4;

drawnow

Top line Cnn/2 : nchoosek(n, n/2) and its known close approximation 2^n /sqrt(pi.n/2)

n = round(10^(1:0.1:8))*2;
logb = nchoosek(n, n/2, "log10");
clf
plot2d("ll", n, logb)
ax = gca();
xgrid(color("grey70"), 1, 7);
//ax.sub_ticks = [ 8 0];
ax.tight_limits = "on";
ax.y_ticks.labels = msprintf("$\\Large 10^{%d}$\n", ax.y_ticks.locations);
xlabel("n", "fontsize",4);
xstring(60, 1000, "nchoosek(n, n/2)", 270)
set(gce(), "clip_state", "off", "font_size",3);

// Relative difference with the 2^n / sqrt(pi.n/2) approximation:
e = abs(10.^(n*log10(2) - (log10(%pi)+log10(n/2))/2 - logb) - 1);

ax = newaxes();
ax.filled = "off";
ax.y_location = "right";
ax.tight_limits = ["on" "off"];
ax.font_color = color("magenta");
plot2d("ll", n, e, style=color("magenta"))
ax.axes_visible(1) = "off";

legend("$\large \left|{\frac{2^n}{\sqrt{\pi n/2}} / nchoosek(n, n/2)}-1\right|$", ..
        "in_upper_left", %f);

Bibliography

  • Binomial coefficients (Wikipedia)
  • Boost C++ librairies, Binomial Coefficients, 2006 , 2007, 2008, 2009, 2010 : John Maddock, Paul A. Bristow, Hubert Holin, Xiaogang Zhang, Bruno Lalande, Johan Råde, Gautam Sewani and Thijs van den Berg.
  • "Introduction to discrete probabilities with Scilab", Michael Baudin, 2010

See also

  • factorial — factorial function : product of the n first positive integers
  • gamma — gamma function, complete or incomplete normalized
  • perms — Generate the table of permutations of given elements

History

VersionDescription
6.1.0 nchoosek() introduced.
Report an issue
<< lcm Discrete mathematics primes >>

Copyright (c) 2022-2024 (Dassault Systèmes)
Copyright (c) 2017-2022 (ESI Group)
Copyright (c) 2011-2017 (Scilab Enterprises)
Copyright (c) 1989-2012 (INRIA)
Copyright (c) 1989-2007 (ENPC)
with contributors
Last updated:
Mon Jan 03 14:23:23 CET 2022