Scilab 6.1.0
      
      - Справка Scilab
 - Signal Processing
 - Filters
 - How to design an elliptic filter
 - analpf
 - buttmag
 - casc
 - cheb1mag
 - cheb2mag
 - ell1mag
 - eqfir
 - eqiir
 - faurre
 - ffilt
 - filt_sinc
 - filter
 - find_freq
 - frmag
 - fsfirlin
 - group
 - hilbert
 - iir
 - iirgroup
 - iirlp
 - kalm
 - lev
 - levin
 - lindquist
 - remez
 - remezb
 - srfaur
 - srkf
 - sskf
 - syredi
 - system
 - trans
 - wfir
 - wfir_gui
 - wiener
 - wigner
 - window
 - yulewalk
 - zpbutt
 - zpch1
 - zpch2
 - zpell
 
Please note that the recommended version of Scilab is 2026.0.0. This page might be outdated.
See the recommended documentation of this function
lindquist
Lindquist's algorithm
Syntax
[P,R,T]=lindquist(n,H,F,G,R0)
Arguments
- n
 number of iterations.
- H, F, G
 estimated triple from the covariance sequence of
y.- R0
 E(yk*yk')
- P
 solution of the Riccati equation after n iterations.
- R, T
 gain matrices of the filter.
Description
computes iteratively the minimal solution of the algebraic
            Riccati equation and gives the matrices R and T of the
            filter model, by the Lindquist's algorithm.
Example
//Generate signal x=%pi/10:%pi/10:102.4*%pi; y=[1; 1] * sin(x) + [sin(2*x); sin(1.9*x)] + rand(2,1024,"normal"); //Compute correlations c=[]; for j=1:2 for k=1:2 c=[c;corr(y(k,:),y(j,:),64)]; end end c=matrix(c,2,128); //Find H,F,G with 6 states hk=hank(20,20,c); [H,F,G]=phc(hk,2,6); //Solve Riccati equation R0=c(1:2,1:2); [P,R,T]=lindquist(100,H,F,G,R0);
See also
| Report an issue | ||
| << levin | Filters | remez >> |