Please note that the recommended version of Scilab is 2025.0.0. This page might be outdated.
See the recommended documentation of this function
perms
Set of permutations of given components
Syntax
y = perms(x) y = perms(x, "unique")
Arguments
- x
Row or column vector of any data type for which the size(), ==, and [] operators are defined, including cells.
- "unique"
Optional text flag, to compute and return the whole set of unique permutations, without any duplicate row. This option can be used only if
x
is sortable. That applies to boolean, integer, real number, and text data types.- y
Array of the type of x, with n=size(x,"*") columns. Each row provides a permutation. Without using the "unique" option,
y
returns n! rows. Otherwise, the number size(y,1)≤ n! of rows depends on the multiplicities of unique values of x.
Description
Given a vector x
of length n
,
perms(..)
computes the expected number of permutations,
and checks if there is enough available memory to compute and store them as the result.
If there is not enough memory, nothing else is done and an error is generated.
Otherwise, the permutations are computed and returned.
When "unique" is used,
x components is kept, and the order
of permutations in y takes it into account. Thus, if necessary,
x can be sorted according to the order chosen by the user,
before calling perms() . |
As a reminder, here is the weight n*n!*8 of y
in bytes, vs the length n of x ,
if x are decimal numbers and "unique" is not used: |
n | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
y [bytes] | 32 | 144 | 768 | 4800 | 34560 | 288240 | 2.58×106 | 26.1×106 | 290×106 | 3.51×109 | 46.0×109 | 648×109 |
Examples
x = [4, 7, 10]; y = perms(x) x = ["a" "b" "c" "d"]; y = perms(x)' c = {"bonjour", %pi, %t}; perms(c)
--> x = [4, 7, 10]; --> y = perms(x) y = 10. 7. 4. 10. 4. 7. 7. 10. 4. 7. 4. 10. 4. 10. 7. 4. 7. 10. --> x = ["a" "b" "c" "d"]; --> perms(x)' ans = !d d d d d d c c c c c c b b b b b b a a a a a a ! !c c b b a a d d b b a a d d c c a a d d c c b b ! !b a c a c b b a d a d b c a d a d c c b d b d c ! !a b a c b c a b a d b d a c a d c d b c b d c d ! --> c = {"bonjour", %pi, %t}; --> perms(c) ans = [1x1 boolean ] [1x1 constant] [1x1 string ] [1x1 boolean ] [1x1 string ] [1x1 constant] [1x1 constant] [1x1 boolean ] [1x1 string ] [1x1 constant] [1x1 string ] [1x1 boolean ] [1x1 string ] [1x1 boolean ] [1x1 constant] [1x1 string ] [1x1 constant] [1x1 boolean ]
With duplicate elements:
perms([1 0 0]) perms([1 0 0], "unique") perms([0 1 2 0], "unique")' p = perms([0 0 0 0 1 1 1 2 2 3], "unique"); size(p)
--> perms([1 0 0]) ans = 0. 0. 1. 0. 1. 0. 0. 0. 1. 0. 1. 0. 1. 0. 0. 1. 0. 0. --> perms([1 0 0], "unique") ans = 0. 0. 1. 0. 1. 0. 1. 0. 0. --> perms([0 1 2 0], "unique")' ans = 0. 0. 0. 0. 0. 0. 1. 1. 1. 2. 2. 2. 0. 0. 1. 1. 2. 2. 0. 0. 2. 0. 0. 1. 1. 2. 0. 2. 0. 1. 0. 2. 0. 0. 1. 0. 2. 1. 2. 0. 1. 0. 2. 0. 0. 1. 0. 0. --> p = perms([0 0 0 0 1 1 1 2 2 3], "unique"); --> size(p) ans = 12600. 10. // instead of 10! = 3628800 rows
See Also
- grand(x,'prm') — Random numbers
- factorial — factorial function : product of the n first positive integers
- unique — extracts (and sorts) distinct elements, rows or columns of a matrix
- gsort — sorting by quick sort algorithm
- try — beginning of try block in try-catch control instruction
History
Version | Description |
6.1.0 | "unique" option introduced. |
Report an issue | ||
<< intersect | Set operations | setdiff >> |