Scilab 6.0.0
      
      - Aide de Scilab
 - Traitement du Signal
 - Filtres
 - analpf
 - buttmag
 - casc
 - cheb1mag
 - cheb2mag
 - convol
 - ell1mag
 - eqfir
 - eqiir
 - faurre
 - ffilt
 - filt_sinc
 - filter
 - find_freq
 - frmag
 - fsfirlin
 - group
 - hilbert
 - iir
 - iirgroup
 - iirlp
 - kalm
 - lev
 - levin
 - lindquist
 - remez
 - remezb
 - srfaur
 - srkf
 - sskf
 - syredi
 - system
 - trans
 - wfir
 - wfir_gui
 - wiener
 - wigner
 - window
 - yulewalk
 - zpbutt
 - zpch1
 - zpch2
 - zpell
 
Please note that the recommended version of Scilab is 2026.0.0. This page might be outdated.
See the recommended documentation of this function
ell1mag
magnitude of elliptic filter
Syntax
[v]=ell1mag(eps,m1,z)
Arguments
- eps
 passband ripple=
1/(1+eps^2)- m1
 stopband ripple=
1/(1+(eps^2)/m1)- z
 sample vector of values in the complex plane
- v
 elliptic filter values at sample points
Description
Function used for squared magnitude of an elliptic filter.
            Usually m1=eps*eps/(a*a-1). Returns
            v=real(ones(z)./(ones(z)+eps*eps*s.*s)) for s=%sn(z,m1).
Examples
deff('[alpha,BeTa]=alpha_beta(n,m,m1)',... 'if 2*int(n/2)==n then, BeTa=K1; else, BeTa=0;end;'+... 'alpha=%k(1-m1)/%k(1-m);') epsilon=0.1;A=10; //ripple parameters m1=(epsilon*epsilon)/(A*A-1);n=5;omegac=6; m=find_freq(epsilon,A,n);omegar = omegac/sqrt(m) %k(1-m1)*%k(m)/(%k(m1)*%k(1-m))-n //Check... [alpha,Beta]=alpha_beta(n,m,m1) alpha*delip(1,sqrt(m))-n*%k(m1) //Check samples=0:0.01:20; //Now we map the positive real axis into the contour... z=alpha*delip(samples/omegac,sqrt(m))+Beta*ones(samples); plot(samples,ell1mag(epsilon,m1,z))

See also
- buttmag — Power transmission of a Butterworth filter
 
| Report an issue | ||
| << convol | Filtres | eqfir >> |