- Scilab Help
- Elementary Functions
- Bitwise operations
- Complex
- Discrete mathematics
- Elementary matrices
- Log - exp - power
- Floating point
- Radix conversions
- Matrix manipulation
- Matrix operations
- Search and sort
- Set operations
- Signal processing
- Symbolic
- Trigonometry
- and
- &
- cat
- cell2mat
- cellstr
- iscolumn
- isempty
- isequal
- ismatrix
- isrow
- isscalar
- issquare
- isvector
- lstsize
- modulo
- ndims
- nthroot
- num2cell
- or
- |
- sign
- size
- unwrap
Please note that the recommended version of Scilab is 2024.1.0. This page might be outdated.
See the recommended documentation of this function
modulo
remainder modulo m with the left operand sign
pmodulo
positive euclidian remainder modulo m
Calling Sequence
i = modulo(n,m)
i = pmodulo(n,m)
Arguments
- m, n
Scalar, vector, matrix or hypermatrix of encoded integers, reals or polynomials (Hypermatrix is not supported for polynomials).
m
andn
must have the same type. If they are of integer type, they may be of distinct encoding length (for instance int8 and int16). If none of them is scalar, they must have the same sizes.- i
Scalar, vector, matrix or hypermatrix of same type (and inttype) as
n
.i
takes the sizes of the biggerm
orn
.
Description
modulo
computes i = n (modulo m)
i.e. remainder of n
divided by m
.
i = n - m .* int (n ./ m)
. Here the answer may be negative
if n
or m
are negative.
pmodulo
computes i = n - |m| .* floor (n ./ |m|)
,
the answer is positive or zero.
If m contains at least one 0 value, modulo(x,m) and pmodulo(x,m) will perform a division by zero. If m is of real type, this exception will be processed according to the ieee() mode. For encoded integers, it will always yield an error. |
Examples
n = [1,2,10,15]; m = [2,2,3,5]; modulo(n,m) modulo(-3, 9) modulo(10, -4) pmodulo(-3, 9) pmodulo(10, -6) pmodulo(-10, -6) // Encoded integers modulo( int8(-13), int16(-7)) pmodulo(int8(-13), int16(-7)) modulo( int8(-13), int16([-7 5])) pmodulo(int8(-13), int16([-7 5])) modulo( int8([-13 8]), int16(-7)) pmodulo(int8([-13 8]), int16(-7)) modulo( int8([-13 8]), int16([-7 5])) pmodulo(int8([-13 8]), int16([-7 5])) // Hypermatrices m = grand(2,2,2,"uin",-100,100) n = grand(2,2,2,"uin",-10 ,10); n(n==0) = 1 modulo(m, 5) pmodulo(m,5) modulo(51, n) pmodulo(51,n) modulo(m, n) pmodulo(m,n) // Polynomials modulo( %z^2+1, %z) pmodulo(%z^2+1, %z)
See also
History
Version | Description |
5.5.0 | Extension to encoded integers and to hypermatrices of encoded integers or reals. |
Report an issue | ||
<< lstsize | Elementary Functions | ndims >> |