Change language to:
English - Français - 日本語 - Português -

Please note that the recommended version of Scilab is 2023.1.0. This page might be outdated.
See the recommended documentation of this function

Scilab help >> Linear Algebra > Matrix Pencil > glever

glever

inverse of matrix pencil

Calling Sequence

`[Bfs,Bis,chis]=glever(E,A [,s])`

Arguments

E, A

two real square matrices of same dimensions

s

character string (default value '`s`')

Bfs,Bis

two polynomial matrices

chis

polynomial

Description

Computation of

`(s*E-A)^-1`

by generalized Leverrier's algorithm for a matrix pencil.

`(s*E-A)^-1 = (Bfs/chis) - Bis.`

`chis` = characteristic polynomial (up to a multiplicative constant).

`Bfs` = numerator polynomial matrix.

`Bis` = polynomial matrix ( - expansion of `(s*E-A)^-1` at infinity).

Note the - sign before `Bis`.

Caution

This function uses `cleanp` to simplify `Bfs,Bis` and `chis`.

Examples

```s=%s;F=[-1,s,0,0;0,-1,0,0;0,0,s-2,0;0,0,0,s-1];
[Bfs,Bis,chis]=glever(F)
inv(F)-((Bfs/chis) - Bis)```