Scilab 5.4.1
Please note that the recommended version of Scilab is 2025.0.0. This page might be outdated.
See the recommended documentation of this function
glever
inverse of matrix pencil
Calling Sequence
[Bfs,Bis,chis]=glever(E,A [,s])
Arguments
- E, A
two real square matrices of same dimensions
- s
character string (default value '
s
')- Bfs,Bis
two polynomial matrices
- chis
polynomial
Description
Computation of
(s*E-A)^-1
by generalized Leverrier's algorithm for a matrix pencil.
(s*E-A)^-1 = (Bfs/chis) - Bis.
chis
= characteristic polynomial (up to a multiplicative constant).
Bfs
= numerator polynomial matrix.
Bis
= polynomial matrix ( - expansion of (s*E-A)^-1
at infinity).
Note the - sign before Bis
.
Caution
This function uses cleanp
to simplify Bfs,Bis
and chis
.
Examples
s=%s;F=[-1,s,0,0;0,-1,0,0;0,0,s-2,0;0,0,0,s-1]; [Bfs,Bis,chis]=glever(F) inv(F)-((Bfs/chis) - Bis)
See Also
Report an issue | ||
<< fstair | Matrix Pencil | kroneck >> |