Scilab 5.4.1
Please note that the recommended version of Scilab is 2025.0.0. This page might be outdated.
See the recommended documentation of this function
pareto_filter
A function which extracts non dominated solution from a set
Calling Sequence
[F_out,X_out,Ind_out] = pareto_filter(F_in,X_in)
Arguments
- F_in
the set of multi-objective function values from which we want to extract the non dominated solutions.
- X_in
the associated values in the parameters space.
- F_out
the set of non dominated multi-objective function values.
- X_out
the associated values in the parameters space.
- Ind_out
the set of indexes of the non dominated individuals selected from the set X_in.
Description
This function applies a Pareto filter to extract non dominated solutions from a set of values.
Examples
function Res=min_bd_deb_1(n) if ~isdef('n','local') then n = 10; end; Res = zeros(n,1); endfunction function Res=max_bd_deb_1(n) if ~isdef('n','local') then n = 10; end; Res = ones(n,1); endfunction function f=get_opti_deb_1(x) f1_x1 = x(1); g_x2 = 1; h = 1 - sqrt(f1_x1 / g_x2); f(1,1) = f1_x1; f(1,2) = g_x2 * h; endfunction function f=deb_1(x) f1_x1 = x(1); g_x2 = 1 + 9 * sum((x(2:$)-x(1)).^2) / (length(x) - 1); h = 1 - sqrt(f1_x1 / g_x2); f(1,1) = f1_x1; f(1,2) = g_x2 * h; endfunction Max = max_bd_deb_1(2); Min = min_bd_deb_1(2); X_in = list(); for i=1:100 X_in(i) = (Max - Min) .* rand(size(Max,1),size(Max,2)) + Min; F_in(i,:) = deb_1(X_in(i)); end [F_out, X_out, Ind_out] = pareto_filter(F_in, X_in)
See Also
- optim_moga — multi-objective genetic algorithm
- optim_nsga — A multi-objective Niched Sharing Genetic Algorithm
- optim_nsga2 — A multi-objective Niched Sharing Genetic Algorithm version 2
Report an issue | ||
<< mutation_ga_default | Utilities | selection_ga_elitist >> |