Please note that the recommended version of Scilab is 2025.0.0. This page might be outdated.
However, this page did not exist in the previous stable version.
fit_dat
Parameter identification based on measured data
Calling Sequence
[p,err]=fit_dat(G,p0,Z [,W] [,pmin,pmax] [,DG])
Arguments
- G
Scilab function (e=G(p,z), e: nex1, p: npx1, z: nzx1)
- p0
initial guess (size npx1)
- Z
matrix [z_1,z_2,...z_n] where z_i (nzx1) is the ith measurement
- W
weighting matrix of size nexne (optional; default 1)
- pmin
lower bound on p (optional; size npx1)
- pmax
upper bound on p (optional; size npx1)
- DG
partial of G wrt p (optional; S=DG(p,z), S: nexnp)
Description
fit_dat
is used for fitting data to a model. For
a given function G(p,z), this function finds the best vector of parameters
p for approximating G(p,z_i)=0 for a set of measurement vectors z_i.
Vector p is found by minimizing
G(p,z_1)'WG(p,z_1)+G(p,z_2)'WG(p,z_2)+...+G(p,z_n)'WG(p,z_n)
Examples
function y=FF(x) y=a*(x-b)+c*x.*x; endfunction X=[]; Y=[]; a=34; b=12; c=14; for x=0:.1:3 Y=[Y,FF(x)+100*(rand()-.5)]; X=[X,x]; end Z=[Y;X]; function e=G(p, z) a=p(1) b=p(2) c=p(3) y=z(1) x=z(2) e=y-FF(x) endfunction [p,err]=fit_dat(G,[3;5;10],Z) xset('window',0) clf(); plot2d(X',Y',-1) plot2d(X',FF(X)',5,'002') a=p(1); b=p(2); c=p(3); plot2d(X',FF(X)',12,'002') a=34; b=12; c=14; function s=DG(p, z) y=z(1), x=z(2), s=-[x-p(2),-p(1),x*x] endfunction [p,err]=fit_dat(G,[3;5;10],Z,DG) xset('window',1) clf(); plot2d(X',Y',-1) plot2d(X',FF(X)',5,'002') a=p(1); b=p(2); c=p(3); plot2d(X',FF(X)',12,'002')
See Also
Report an issue | ||
<< derivative | Optimisation et Simulation | karmarkar >> |