Scilab Home page | Wiki | Bug tracker | Forge | Mailing list archives | ATOMS | File exchange
Please login or create an account
Change language to: Français - Português - 日本語 - Русский

Please note that the recommended version of Scilab is 6.0.1. This page might be outdated.
See the recommended documentation of this function

Scilab help >> Polynomials > bezout

bezout

Bezout equation for polynomials or integers

Calling Sequence

[thegcd,U]=bezout(p1,p2)

Arguments

p1, p2

two real polynomials or two integer scalars (type equal to 8)

Description

[thegcd,U]=bezout(p1,p2) computes GCD thegcd of p1 and p2 and in addition a (2x2) unimodular matrix U such that:

[p1,p2]*U = [thegcd,0]

The lcm of p1 and p2 is given by:

p1*U(1,2) (or -p2*U(2,2))

Examples

// polynomial case
x=poly(0,'x');
p1=(x+1)*(x-3)^5;p2=(x-2)*(x-3)^3;
[thegcd,U]=bezout(p1,p2)
det(U)
clean([p1,p2]*U)
thelcm=p1*U(1,2)
lcm([p1,p2])

// integer case
i1=int32(2*3^5); i2=int32(2^3*3^2);
[thegcd,U]=bezout(i1,i2)
V=int32([2^2*3^5, 2^3*3^2,2^2*3^4*5]);
[thegcd,U]=gcd(V)
V*U
lcm(V)

See Also

  • poly — polynomial definition
  • roots — roots of polynomials
  • simp — rational simplification
  • clean — cleans matrices (round to zero small entries)
  • lcm — least common multiple
Scilab Enterprises
Copyright (c) 2011-2017 (Scilab Enterprises)
Copyright (c) 1989-2012 (INRIA)
Copyright (c) 1989-2007 (ENPC)
with contributors
Last updated:
Mon Oct 01 17:34:46 CEST 2012