- Aide Scilab
- Algèbre Lineaire
- bdiag
- chfact
- chol
- chsolve
- cmb_lin
- coff
- colcomp
- companion
- cond
- det
- expm
- fullrf
- fullrfk
- givens
- glever
- gspec
- hess
- householder
- inv
- kernel
- linsolve
- lu
- lyap
- nlev
- orth
- pbig
- pinv
- polar
- proj
- qr
- range
- rank
- rcond
- rowcomp
- spec
- sqroot
- squeeze
- sva
- svd
- trace
- aff2ab
- balanc
- classmarkov
- eigenmarkov
- ereduc
- fstair
- genmarkov
- gschur
- im_inv
- kroneck
- lsq
- pencan
- penlaur
- projspec
- psmall
- quaskro
- randpencil
- rankqr
- rowshuff
- rref
- schur
- spaninter
- spanplus
- spantwo
- sylv
Please note that the recommended version of Scilab is 2026.0.0. This page might be outdated.
See the recommended documentation of this function
randpencil
random pencil
Calling Sequence
F=randpencil(eps,infi,fin,eta)
Arguments
- eps
- vector of integers 
- infi
- vector of integers 
- fin
- real vector, or monic polynomial, or vector of monic polynomial 
- eta
- vector of integers 
- F
- real matrix pencil - F=s*E-A(- s=poly(0,'s'))
Description
Utility function.
    F=randpencil(eps,infi,fin,eta) returns a random pencil F
    with given Kronecker structure. The structure is given by:
    eps=[eps1,...,epsk]: structure of epsilon blocks (size eps1x(eps1+1),....)
    fin=[l1,...,ln]  set of finite eigenvalues (assumed real)  (possibly [])
    infi=[k1,...,kp] size of J-blocks at infinity
    ki>=1  (infi=[] if no J blocks).
    eta=[eta1,...,etap]: structure ofeta blocks (size eta1+1)xeta1,...)
epsi's should be >=0, etai's should be >=0, infi's should 
    be >=1.
If fin is a (monic) polynomial, the finite block admits the roots of 
    fin as eigenvalues.
If fin is a vector of polynomial, they are the finite elementary
    divisors of F i.e. the roots of p(i) are finite
    eigenvalues of F.
Examples
See Also
| << quaskro | Algèbre Lineaire | rankqr >> |