Scilab-Branch-5.3-GIT
- Scilab help
- Linear Algebra
- aff2ab
- balanc
- bdiag
- chfact
- chol
- chsolve
- classmarkov
- cmb_lin
- coff
- colcomp
- companion
- cond
- det
- eigenmarkov
- ereduc
- expm
- fstair
- fullrf
- fullrfk
- genmarkov
- givens
- glever
- gschur
- gspec
- hess
- householder
- im_inv
- inv
- kernel
- kroneck
- linsolve
- lsq
- lu
- lyap
- nlev
- orth
- pbig
- pencan
- penlaur
- pinv
- polar
- proj
- projspec
- psmall
- qr
- quaskro
- randpencil
- range
- rank
- rankqr
- rcond
- rowcomp
- rowshuff
- rref
- schur
- spaninter
- spanplus
- spantwo
- spec
- sqroot
- squeeze
- sva
- svd
- sylv
- trace
Please note that the recommended version of Scilab is 2025.0.0. This page might be outdated.
See the recommended documentation of this function
range
range (span) of A^k
Calling Sequence
[X,dim]=range(A,k)
Arguments
- A
real square matrix
- k
integer
- X
orthonormal real matrix
- dim
integer (dimension of subspace)
Description
Computation of Range A^k
; the first dim rows of X
span the
range of A^k
. The last rows of X
span the
orthogonal complement of the range. X*X'
is the Identity matrix
Examples
A=rand(4,2)*rand(2,4); // 4 column vectors, 2 independent. [X,dim]=range(A,1);dim // compute the range y1=A*rand(4,1); //a vector which is in the range of A y2=rand(4,1); //a vector which is not in the range of A norm(X(dim+1:$,:)*y1) //the last entries are zeros, y1 is in the range of A norm(X(dim+1:$,:)*y2) //the last entries are not zeros I=X(1:dim,:)' //I is a basis of the range coeffs=X(1:dim,:)*y1 // components of y1 relative to the I basis norm(I*coeffs-y1) //check
Authors
F. D. INRIA ;
Used Functions
The range
function is based on the rowcomp function
which uses the svd decomposition.
<< randpencil | Linear Algebra | rank >> |