Scilab-Branch-5.3-GIT
- Scilab help
- Linear Algebra
- aff2ab
- balanc
- bdiag
- chfact
- chol
- chsolve
- classmarkov
- cmb_lin
- coff
- colcomp
- companion
- cond
- det
- eigenmarkov
- ereduc
- expm
- fstair
- fullrf
- fullrfk
- genmarkov
- givens
- glever
- gschur
- gspec
- hess
- householder
- im_inv
- inv
- kernel
- kroneck
- linsolve
- lsq
- lu
- lyap
- nlev
- orth
- pbig
- pencan
- penlaur
- pinv
- polar
- proj
- projspec
- psmall
- qr
- quaskro
- randpencil
- range
- rank
- rankqr
- rcond
- rowcomp
- rowshuff
- rref
- schur
- spaninter
- spanplus
- spantwo
- spec
- sqroot
- squeeze
- sva
- svd
- sylv
- trace
Please note that the recommended version of Scilab is 2025.0.0. This page might be outdated.
See the recommended documentation of this function
linsolve
linear equation solver
Calling Sequence
[x0,kerA]=linsolve(A,b [,x0])
Arguments
- A
a
na x ma
real matrix (possibly sparse)- b
a
na x 1
vector (same row dimension asA
)- x0
a real vector
- kerA
a
ma x k
real matrix
Description
linsolve
computes all the solutions to A*x+b=0
.
x0
is a particular solution (if any) and kerA=
nullspace
of A
. Any x=x0+kerA*w
with arbitrary w
satisfies
A*x+b=0
.
If compatible x0
is given on entry, x0
is returned. If not
a compatible x0
, if any, is returned.
Examples
A=rand(5,3)*rand(3,8); b=A*ones(8,1);[x,kerA]=linsolve(A,b);A*x+b //compatible b b=ones(5,1);[x,kerA]=linsolve(A,b);A*x+b //uncompatible b A=rand(5,5);[x,kerA]=linsolve(A,b), -inv(A)*b //x is unique // Benchmark with other linear sparse solver: [A,descr,ref,mtype] = ReadHBSparse(SCI+"/modules/umfpack/examples/bcsstk24.rsa"); b = 0*ones(size(A,1),1); tic(); res = umfpack(A,'\',b); printf('\ntime needed to solve the system with umfpack: %.3f\n',toc()); tic(); res = linsolve(A,b); printf('\ntime needed to solve the system with linsolve: %.3f\n',toc()); tic(); res = A\b; printf('\ntime needed to solve the system with the backslash operator: %.3f\n',toc());
See Also
<< kroneck | Linear Algebra | lsq >> |