Scilab Website | Contribute with GitLab | Mailing list archives | ATOMS toolboxes
Scilab Online Help
5.3.0 - English

Change language to:
Français - 日本語 - Português

Please note that the recommended version of Scilab is 2024.0.0. This page might be outdated.
See the recommended documentation of this function

Scilab manual >> CACSD > reglin


Linear regression

Calling Sequence



solve the regression problem y=a*x+ b in the least square sense. sig is the standard deviation of the residual. x and y are two matrices of size x(p,n) and y(q,n), where n is the number of samples.

The estimator a is a matrix of size (q,p) and b is a vector of size (q,1)

// simulation of data for a(3,5) and b(3,1)
y=aa*x +bb*ones(1,100)+ 0.1*rand(3,100);
// identification 
// an other example : fitting a polynom 
f=1:100; x=[f.*f; f];
y= [ 2,3]*x+ 10*ones(f) + 0.1*rand(f);

See Also

<< projsl CACSD repfreq >>

Copyright (c) 2022-2023 (Dassault Systèmes)
Copyright (c) 2017-2022 (ESI Group)
Copyright (c) 2011-2017 (Scilab Enterprises)
Copyright (c) 1989-2012 (INRIA)
Copyright (c) 1989-2007 (ENPC)
with contributors
Last updated:
Wed Jan 26 16:23:41 CET 2011