- Scilab Online Help
- Linear Algebra
- aff2ab
- balanc
- bdiag
- chfact
- chol
- chsolve
- classmarkov
- cmb_lin
- coff
- colcomp
- companion
- cond
- det
- eigenmarkov
- ereduc
- expm
- fstair
- fullrf
- fullrfk
- genmarkov
- givens
- glever
- gschur
- gspec
- hess
- householder
- im_inv
- inv
- kernel
- kroneck
- linsolve
- lsq
- lu
- lyap
- nlev
- orth
- pbig
- pencan
- penlaur
- pinv
- polar
- proj
- projspec
- psmall
- qr
- quaskro
- randpencil
- range
- rank
- rankqr
- rcond
- rowcomp
- rowshuff
- rref
- schur
- spaninter
- spanplus
- spantwo
- spec
- sqroot
- squeeze
- sva
- svd
- sylv
- trace
Please note that the recommended version of Scilab is 2025.0.0. This page might be outdated.
See the recommended documentation of this function
randpencil
random pencil
Calling Sequence
F=randpencil(eps,infi,fin,eta)
Arguments
- eps
vector of integers
- infi
vector of integers
- fin
real vector, or monic polynomial, or vector of monic polynomial
- eta
vector of integers
- F
real matrix pencil
F=s*E-A
(s=poly(0,'s')
)
Description
Utility function.
F=randpencil(eps,infi,fin,eta)
returns a random pencil F
with given Kronecker structure. The structure is given by:
eps=[eps1,...,epsk]
: structure of epsilon blocks (size eps1x(eps1+1),....)
fin=[l1,...,ln]
set of finite eigenvalues (assumed real) (possibly [])
infi=[k1,...,kp]
size of J-blocks at infinity
ki>=1
(infi=[] if no J blocks).
eta=[eta1,...,etap]
: structure ofeta blocks (size eta1+1)xeta1,...)
epsi
's should be >=0, etai
's should be >=0, infi
's should
be >=1.
If fin
is a (monic) polynomial, the finite block admits the roots of
fin
as eigenvalues.
If fin
is a vector of polynomial, they are the finite elementary
divisors of F
i.e. the roots of p(i)
are finite
eigenvalues of F
.
Examples
<< quaskro | Linear Algebra | range >> |