Scilab 5.3.0
- Scilab Online Help
- Linear Algebra
- aff2ab
- balanc
- bdiag
- chfact
- chol
- chsolve
- classmarkov
- cmb_lin
- coff
- colcomp
- companion
- cond
- det
- eigenmarkov
- ereduc
- expm
- fstair
- fullrf
- fullrfk
- genmarkov
- givens
- glever
- gschur
- gspec
- hess
- householder
- im_inv
- inv
- kernel
- kroneck
- linsolve
- lsq
- lu
- lyap
- nlev
- orth
- pbig
- pencan
- penlaur
- pinv
- polar
- proj
- projspec
- psmall
- qr
- quaskro
- randpencil
- range
- rank
- rankqr
- rcond
- rowcomp
- rowshuff
- rref
- schur
- spaninter
- spanplus
- spantwo
- spec
- sqroot
- squeeze
- sva
- svd
- sylv
- trace
Please note that the recommended version of Scilab is 2025.0.0. This page might be outdated.
See the recommended documentation of this function
glever
inverse of matrix pencil
Calling Sequence
[Bfs,Bis,chis]=glever(E,A [,s])
Arguments
- E, A
two real square matrices of same dimensions
- s
character string (default value '
s
')- Bfs,Bis
two polynomial matrices
- chis
polynomial
Description
Computation of
(s*E-A)^-1
by generalized Leverrier's algorithm for a matrix pencil.
(s*E-A)^-1 = (Bfs/chis) - Bis.
chis
= characteristic polynomial (up to a multiplicative constant).
Bfs
= numerator polynomial matrix.
Bis
= polynomial matrix ( - expansion of (s*E-A)^-1
at infinity).
Note the - sign before Bis
.
Caution
This function uses cleanp
to simplify Bfs,Bis
and chis
.
Examples
s=%s;F=[-1,s,0,0;0,-1,0,0;0,0,s-2,0;0,0,0,s-1]; [Bfs,Bis,chis]=glever(F) inv(F)-((Bfs/chis) - Bis)
Authors
F. D. (1988)
<< givens | Linear Algebra | gschur >> |