Scilab Home page | Wiki | Bug tracker | Forge | Mailing list archives | ATOMS | File exchange
Please login or create an account
Change language to: Français - Português - 日本語

Please note that the recommended version of Scilab is 6.0.2. This page might be outdated.
See the recommended documentation of this function

Scilab manual >> Graphics Library > 2d_plot > histplot

histplot

plot a histogram

Calling Sequence

histplot(n, data, <opt_args>)
histplot(x, data, <opt_args>)

Arguments

n

positive integer (number of classes)

x

increasing vector defining the classes (x may have at least 2 components)

data

vector (datas to be analysed)

<opt_args>

This represents a sequence of statements key1=value1,key2=value2 ,... where key1, key2,... can be any optional plot2d parameter (style,strf,leg, rect,nax, logflag,frameflag, axesflag) or normalization. For this last one the corresponding value must be a boolean scalar (default value %t).

Description

This function plot an histogram of the data vector using the classes x. When the number n of classes is provided instead of x, the classes are choosen equally spaced and x(1) = min(data) < x(2) = x(1) + dx < ... < x(n+1) = max(data) with dx = (x(n+1)-x(1))/n.

The classes are defined by C1 = [x(1), x(2)] and Ci = ( x(i), x(i+1)] for i >= 2. Noting Nmax the total number of data (Nmax = length(data)) and Ni the number of data components falling in Ci, the value of the histogram for x in Ci is equal to Ni/(Nmax (x(i+1)-x(i))) when normalization is true (default case) and else, simply equal to Ni. When normalization occurs the histogram verifies:

x(n+1)
/  
|   h(x) dx = 1,  when x(1)<=min(data) and max(data) <= x(n+1)) 
/
x(1)

Any plot2d (optional) parameter may be provided; for instance to plot an histogram with the color number 2 (blue if std colormap is used) and to restrict the plot inside the rectangle [-3,3]x[0,0.5], you may use histplot(n,data, style=2, rect=[-3,0,3,0.5]).

Enter the command histplot() to see a demo.

Examples

// example #1: variations around an histogram of a gaussian random sample 
d=rand(1,10000,'normal');  // the gaussian random sample
clf();histplot(20,d)
clf();histplot(20,d,normalization=%f)
clf();histplot(20,d,leg='rand(1,10000,''normal'')',style=5)
clf();histplot(20,d,leg='rand(1,10000,''normal'')',style=16, rect=[-3,0,3,0.5]); 

// example #2: histogram of a binomial (B(6,0.5)) random sample
d = grand(1000,1,"bin", 6, 0.5);
c = linspace(-0.5,6.5,8);
clf()
subplot(2,1,1)
  histplot(c, d, style=2)
  xtitle("normalized histogram")
subplot(2,1,2)
  histplot(c, d, normalization=%f, style=5)
  xtitle("non normalized histogram")

// example #3: histogram of an exponential random sample 
lambda = 2;
X = grand(100000,1,"exp", 1/lambda);
Xmax = max(X);
clf()
histplot(40, X, style=2)
x = linspace(0,max(Xmax),100)';
plot2d(x,lambda*exp(-lambda*x),strf="000",style=5)
legend(["exponential random sample histogram" "exact density curve"]);
Scilab Enterprises
Copyright (c) 2011-2017 (Scilab Enterprises)
Copyright (c) 1989-2012 (INRIA)
Copyright (c) 1989-2007 (ENPC)
with contributors
Last updated:
Wed Jan 26 16:23:43 CET 2011