bsplin3val
3d spline arbitrary derivative evaluation function
Syntax
dfp = bsplin3val(xp, yp, zp, tl, der)
Arguments
- xp, yp, zp
real vectors or matrices of same size
- tl
tlist of type "splin3d", defining a 3d tensor spline (called
s
in the following)- der
vector with 3 components
[ox,oy,oz]
defining which derivative ofs
to compute.- dfp
vector or matrix of same format than
xp
,yp
andzp
, elementwise evaluation of the specified derivative ofs
on these points.
Description
While the function interp3d may
compute only the spline s
and its first derivatives,
bsplin3val
may compute any derivative of
s
. The derivative to compute is specified by the
argument der=[ox,oy,oz]
:
So der=[0 0 0]
corresponds to
s, der=[1 0 0]
to
ds/dx, der=[0 1 0]
to
ds/dy, der=[1 1 0]
to
d2s/dxdy, etc...
For a point with coordinates (xp(i),yp(i),zp(i)) outside the grid, the function returns 0.
Examples
deff("v=f(x,y,z)","v=cos(x).*sin(y).*cos(z)"); deff("v=fx(x,y,z)","v=-sin(x).*sin(y).*cos(z)"); deff("v=fxy(x,y,z)","v=-sin(x).*cos(y).*cos(z)"); deff("v=fxyz(x,y,z)","v=sin(x).*cos(y).*sin(z)"); deff("v=fxxyz(x,y,z)","v=cos(x).*cos(y).*sin(z)"); n = 20; // n x n x n interpolation points x = linspace(0,2*%pi,n); y=x; z=x; // interpolation grid [X,Y,Z] = ndgrid(x,y,z); V = f(X,Y,Z); tl = splin3d(x,y,z,V,[5 5 5]); // compute f and some derivates on a point // and compare with the spline interpolant xp = grand(1,1,"unf",0,2*%pi); yp = grand(1,1,"unf",0,2*%pi); zp = grand(1,1,"unf",0,2*%pi); f_e = f(xp,yp,zp) f_i = bsplin3val(xp,yp,zp,tl,[0 0 0]) fx_e = fx(xp,yp,zp) fx_i = bsplin3val(xp,yp,zp,tl,[1 0 0]) fxy_e = fxy(xp,yp,zp) fxy_i = bsplin3val(xp,yp,zp,tl,[1 1 0]) fxyz_e = fxyz(xp,yp,zp) fxyz_i = bsplin3val(xp,yp,zp,tl,[1 1 1]) fxxyz_e = fxxyz(xp,yp,zp) fxxyz_i = bsplin3val(xp,yp,zp,tl,[2 1 1])
Report an issue | ||
<< bezier | Interpolation | cshep2d >> |