Scilab Website | Contribute with GitLab | Mailing list archives | ATOMS toolboxes
Scilab Online Help
2024.0.0 - English


stabil

stabilization

Syntax

F = stabil(A, B, alfa)
K = stabil(Sys, alfa, beta)

Arguments

A

square real matrix (nx x nx)

B

real matrix (nx x nu)

alfa, beta

real or complex vector (in conjugate pairs) or real number.

F

real matrix (nx x nu)

Sys

linear system (syslin list) (m inputs, p outputs).

K

linear system (p inputs, m outputs)

Description

F=stabil(A,B,alfa) returns a gain matrix F such that A+B*F is stable if pair (A,B) is stabilizable. Assignable poles are set to alfa(1),alfa(2),.... If (A,B) is not stabilizable a warning is given and assignable poles are set to alfa(1),alfa(2),.... If alfa is a number all eigenvalues are set to this alfa (default value is alfa=-1).

K=stabil(Sys,alfa,beta) returns K, a compensator for Sys such that (A,B)-controllable eigenvalues are set to alfa and (C,A)-observable eigenvalues are set to beta.

All assignable closed loop poles (which are given by the eigenvalues of Aclosed=h_cl(Sys,K) are set to alfa(i)'s and beta(j)'s.

Examples

// Gain:
Sys=ssrand(0,2,5,list('st',2,3,3));
A=Sys('A');B=Sys('B');F=stabil(A,B);
spec(A) //2 controllable modes 2 unstable uncontrollable modes
//and one stable uncontrollable mode
spec(A+B*F) //the two controllable modes are set to -1.
// Compensator:
Sys=ssrand(3,2,5,list('st',2,3,3)); //3 outputs, 2 inputs, 5 states
//2 controllables modes, 3 controllable or stabilizable modes.
K=stabil(Sys,-2,-3);  //Compensator for Sys.
spec(Sys('A'))
spec(h_cl(Sys,K))   //K Stabilizes what can be stabilized.

See also

  • st_ility — stabilizability test
  • contr — controllability, controllable subspace, staircase
  • ppol — pole placement
Report an issue
<< ppol Pole Placement ddp >>

Copyright (c) 2022-2024 (Dassault Systèmes)
Copyright (c) 2017-2022 (ESI Group)
Copyright (c) 2011-2017 (Scilab Enterprises)
Copyright (c) 1989-2012 (INRIA)
Copyright (c) 1989-2007 (ENPC)
with contributors
Last updated:
Tue Oct 24 14:30:03 CEST 2023