determ
determinant of a matrix of polynomials
Syntax
res = determ(W) res = determ(W, k)
Arguments
- W
square matrix of real or complex polynomials
- k
integer (upper bound for the degree of the determinant of W)
Description
returns the determinant of a matrix of polynomials.
res=determ(W [,k]) where k is an integer larger
than the actual degree of the determinant of W.
The default value of k is the smallest power of 2 which is larger
than n*max(degree(W)).
Method (Only if W size is greater than 2*2) : evaluate the determinant of
W for the Fourier frequencies
and apply inverse FFT to the coefficients of the determinant.
Examples
s = %s; P = [5+3*s, 1-5*s, -4+6*s ; -3+5*s, -3*s, -9 ; 8*s, -6-2*s, 4-6*s] determ(P)
--> P = [5+3*s, 1-5*s, -4+6*s ; -3+5*s, -3*s, -9 ; 8*s, -6-2*s, 4-6*s] P = 5 +3s 1 -5s -4 +6s -3 +5s -3s -9 8s -6 -2s 4 -6s --> determ(P) ans = -330 -278s +380s² -12s³
See also
| Report an issue | ||
| << derivat | Polynomials | detr >> |