copfac
right coprime factorization of continuous time dynamical systems
Syntax
[N, M, XT, YT] = copfac(G) [N, M, XT, YT] = copfac(G, polf, polc, tol)
Arguments
- G
- a continuous-time linear dynamical system. 
- polf, polc
- respectively the poles of - XTand- YTand the poles of- nand- M(default values =-1).
- tol
- real threshold for detecting stable poles (default value - 100*%eps)
- N,M,XT,YT
- continuous-time linear dynamical systems. 
Description
[N,M,XT,YT]=copfac(G,[polf,polc,[tol]]) returns a right coprime factorization of G.
G= N*M^-1 where N and M are stable, proper and right coprime.
            (i.e. [N M] left-invertible with stability)
XT and YT satisfy:
[XT -YT].[M N]' = eye (Bezout identity)
G is assumed stabilizable and detectable.
See also
History
| Versão | Descrição | 
| 5.4.0 | Slis now checked for continuous time linear dynamical system.
                    This modification has been introduced by this  commit | 
| Report an issue | ||
| << colinout | Linear System Factorization | dcf >> |