gtild
tilde operation
Syntax
Gt = gtild(G) Gt = gtild(G, flag)
Arguments
- G
either a polynomial or a linear system (
syslinlist) or a rational matrix- Gt
same as G
- flag
character string: either
'c'or'd'(optional parameter).
Description
If G is a polynomial matrix (or a polynomial), Gt=gtild(G,'c')
returns the polynomial matrix Gt(s)=G(-s)'.
If G is a polynomial matrix (or a polynomial), Gt=gtild(G,'d')
returns the polynomial matrix Gt=G(1/z)*z^n where n is the maximum
degree of G.
For continuous-time systems represented in state-space by a syslin list,
Gt = gtild(G,'c') returns a state-space representation
of G(-s)' i.e the ABCD matrices of Gt are
A',-C', B', D'. If G is improper (D= D(s))
the D matrix of Gt is D(-s)'.
For discrete-time systems represented in state-space by a syslin list,
Gt = gtild(G,'d') returns a state-space representation
of G(-1/z)' i.e the (possibly improper) state-space
representation of -z*C*inv(z*A-B)*C + D(1/z).
For rational matrices, Gt = gtild(G,'c') returns the rational
matrix Gt(s)=G(-s) and Gt = gtild(G,'d') returns the
rational matrix Gt(z)= G(1/z)'.
The parameter flag is necessary when gtild is called with
a polynomial argument.
Examples
//Continuous time s=poly(0,'s');G=[s,s^3;2+s^3,s^2-5] Gt=gtild(G,'c') Gt-horner(G,-s)' //continuous-time interpretation Gt=gtild(G,'d'); Gt-horner(G,1/s)'*s^3 //discrete-time interpretation G=ssrand(2,2,3);Gt=gtild(G); //State-space (G is cont. time by default) clean((horner(ss2tf(G),-s))'-ss2tf(Gt)) //Check // Discrete-time z=poly(0,'z'); Gss=ssrand(2,2,3);Gss('dt')='d'; //discrete-time Gss(5)=[1,2;0,1]; //With a constant D matrix G=ss2tf(Gss);Gt1=horner(G,1/z)'; Gt=gtild(Gss); Gt2=clean(ss2tf(Gt)); clean(Gt1-Gt2) //Check //Improper systems z=poly(0,'z'); Gss=ssrand(2,2,3);Gss(7)='d'; //discrete-time Gss(5)=[z,z^2;1+z,3]; //D(z) is polynomial G=ss2tf(Gss);Gt1=horner(G,1/z)'; //Calculation in transfer form Gt=gtild(Gss); //..in state-space Gt2=clean(ss2tf(Gt));clean(Gt1-Gt2) //Check
See also
| Report an issue | ||
| << fstabst | Linear System Factorization | lcf >> |