detr
determinant of a matrix of rationals
Syntax
d = detr(h)
Arguments
- h
square matrix of numbers or polynomials or rationals
- d
scalar of the
h's type.
Description
d=detr(h) computes the determinant d of the
matrix h, according to the Leverrier's algorithm.
Examples
// Matrix of doubles A = rand(5,5); detr(A) A = A+%i; detr(A) // Matrix of polynomials x = poly(0, 'x') A = [1+x 2 5; 3 4-x 3+x; x^2 1 x]; detr(A) // Matrix of rationals A = [1/x, 2, 3 ; 3, 4/x, 3/x ; 1/x^2, 1, 1/x]; detr(A)
--> detr(A)
ans =
-2 -3x -6x² +9x³
----------------
x³
| Report an issue | ||
| << determ | Polynomials | diophant >> |