# detr

determinant of a matrix of rationals

### Syntax

`d = detr(h)`

### Arguments

h

square matrix of numbers or polynomials or rationals

d

scalar of the `h`'s type.

### Description

`d=detr(h)` computes the determinant `d` of the matrix `h`, according to the Leverrier's algorithm.

### Examples

```// Matrix of doubles
A = rand(5,5);
detr(A)

A = A+%i;
detr(A)

// Matrix of polynomials
x = poly(0, 'x')
A = [1+x 2 5; 3 4-x 3+x; x^2 1 x];
detr(A)

// Matrix of rationals
A = [1/x, 2, 3 ; 3, 4/x, 3/x ; 1/x^2, 1, 1/x];
detr(A)```
```--> detr(A)
ans  =
-2 -3x -6x² +9x³
----------------
x³
```

### See also

• det — определитель квадратной матрицы
• determ — determinant of a matrix of polynomials
 Report an issue << determ Polynomials diophant >>

 Copyright (c) 2022-2023 (Dassault Systèmes)Copyright (c) 2017-2022 (ESI Group)Copyright (c) 2011-2017 (Scilab Enterprises)Copyright (c) 1989-2012 (INRIA)Copyright (c) 1989-2007 (ENPC)with contributors Last updated:Tue Mar 07 09:28:44 CET 2023