Scilab Website | Contribute with GitLab | Mailing list archives | ATOMS toolboxes
Scilab Online Help
2023.0.0 - Русский


derivat

derivative of polynomials or of rationals

Syntax

pd = derivat(p)

Arguments

p, pd

arrays of polynomials or of rationals

Description

The derivat() function works with expressions like p(z) = \sum \limits_{i = -\infty}^{\infty} A_{i} z^{i} which consists of functions of linear combinations with integer exponents of one variable (in the example denoted by z).

The function derivat() implements the analytical derivation of p(z), giving the following result. \dfrac{d(p(z))}{d z} = \sum \limits_{i = -\infty}^{\infty} i A_{i} z^{i - 1}

Examples

s = poly(0,'s');
derivat(1/s)  // -1/s^2;
p1 = poly([1 -2 1], 'x', 'coeff')
derivat(p1)
p2 = poly([1 -4 2], 'y', 'coeff')
derivat(p2)
p3 = poly(ones(1, 10), 'z', 'coeff')
derivat(p3)
p4 = poly([-1 1], 't', 'roots')
derivat(p4)
s = %s; p5 = s^(-1) + 2 + 3*s
derivat(p5)

See also

Report an issue
<< degree Polynomials determ >>

Copyright (c) 2022-2024 (Dassault Systèmes)
Copyright (c) 2017-2022 (ESI Group)
Copyright (c) 2011-2017 (Scilab Enterprises)
Copyright (c) 1989-2012 (INRIA)
Copyright (c) 1989-2007 (ENPC)
with contributors
Last updated:
Tue Mar 07 09:28:44 CET 2023