srfaur
square-root algorithm
Syntax
[p,s,t,l,rt,tt]=srfaur(h,f,g,r0,n,p,s,t,l)
Arguments
- h, f, g
- convenient matrices of the state-space model. 
- r0
- E(yk*yk'). 
- n
- number of iterations. 
- p
- estimate of the solution after n iterations. 
- s, t, l
- intermediate matrices for successive iterations; 
- rt, tt
- gain matrices of the filter model after - niterations.
- p, s, t, l
- may be given as input if more than one recursion is desired (evaluation of intermediate values of - p).
Description
square-root algorithm for the algebraic Riccati equation.
Examples
//GENERATE SIGNAL x=%pi/10:%pi/10:102.4*%pi; rand('seed',0);rand('normal'); y=[1;1]*sin(x)+[sin(2*x);sin(1.9*x)]+rand(2,1024); //COMPUTE CORRELATIONS c=[];for j=1:2,for k=1:2,c=[c;corr(y(k,:),y(j,:),64)];end;end c=matrix(c,2,128); //FINDING H,F,G with 6 states hk=hank(20,20,c); [H,F,G]=phc(hk,2,6); //SOLVING RICCATI EQN r0=c(1:2,1:2); [P,s,t,l,Rt,Tt]=srfaur(H,F,G,r0,200); //Make covariance matrix exactly symmetric Rt=(Rt+Rt')/2
See also
| Report an issue | ||
| << sgolayfilt | Filters | srkf >> |