- Scilab Help
- Optimization and Simulation
- Optimization simplex
- optimsimplex_center
- optimsimplex_check
- optimsimplex_compsomefv
- optimsimplex_computefv
- optimsimplex_deltafv
- optimsimplex_deltafvmax
- optimsimplex_destroy
- optimsimplex_dirmat
- optimsimplex_fvmean
- optimsimplex_fvstdev
- optimsimplex_fvvariance
- optimsimplex_getall
- optimsimplex_getallfv
- optimsimplex_getallx
- optimsimplex_getfv
- optimsimplex_getn
- optimsimplex_getnbve
- optimsimplex_getve
- optimsimplex_getx
- optimsimplex_gradientfv
- optimsimplex_new
- overview
- optimsimplex_reflect
- optimsimplex_setall
- optimsimplex_setallfv
- optimsimplex_setallx
- optimsimplex_setfv
- optimsimplex_setn
- optimsimplex_setnbve
- optimsimplex_setve
- optimsimplex_setx
- optimsimplex_shrink
- optimsimplex_size
- optimsimplex_sort
- optimsimplex_xbar
Please note that the recommended version of Scilab is 2025.0.0. This page might be outdated.
See the recommended documentation of this function
optimsimplex_reflect
Returns the reflected simplex object.
Calling Sequence
r = optimsimplex_reflect(opt, fun) [r, data] = optimsimplex_reflect(opt, fun, data)
Argument
- opt
The current simplex object of TSIMPLEX type (tlist).
- fun
The function to compute at vertices.
The
fun
function is expected to have the following input and output arguments:y = myfunction (x)
- data
User-defined data passed to the function (optional).
If
data
is provided, it is passed to the callback function both as an input and output argument. In that case, the function must have the following header :[y, data] = myfunction (x, data)
The data input parameter may be used if the function uses some additional parameters. It is returned as an output parameter because the function may modify the data while computing the function value. This feature may be used, for example, to count the number of times that the function has been called.
- r
The reflected simplex object.
Description
The optimsimplex_reflect
function returns a new simplex by reflexion
of current simplex, by reflection with respect to the first vertex in the simplex.
This move is used in the centered simplex gradient.
Example
function y=rosenbrock(x) y = 100*(x(2)-x(1)^2)^2 + (1-x(1))^2; endfunction simplex = [ 3. 0. 0. 4. 1. 0. 5. 0. 2. ]; s1 = optimsimplex_new (); s1 = optimsimplex_setall ( s1 , simplex ); r = optimsimplex_reflect ( s1 , rosenbrock ); computed = optimsimplex_getall ( r ) s1 = optimsimplex_destroy(s1); r = optimsimplex_destroy(r);
See Also
- optimsimplex_new — Creates a new simplex object.
Report an issue | ||
<< overview | Optimization simplex | optimsimplex_setall >> |