Please note that the recommended version of Scilab is 2025.0.0. This page might be outdated.
See the recommended documentation of this function
bitcmp
bitwise complement of integers
Syntax
y = bitcmp(x) y = bitcmp(x, bitnum)
Arguments
- x, y
- arrays of signed or unsigned integers (int8, .., uint64), or of positive decimal
integers. Hypermatrix supported.
x
andy
have the same integer type and the same size. - bitnum
- positive encoded or decimal integer, or array of positive encoded or decimal
integers of size equal to size(x): bits #1 to #bitnum of
x
are considered and inversed. According to the integer type ofx
,bitnum
must be in the interval[1, bitmax]
with bitmax as follows:
The defaultinttype : int8 uint8 int16 uint16 int32 uint32 int64 uint64 decimal bitmax : 8 8 16 16 32 32 64 64 1024 bitnum
value depends on the input integer type:bitnum = bitmax
for encoded integersbitnum = 53
for decimal integersx ≤ 1/%eps
bitnum = int(log2(x))+1
for decimal integersx > 1/%eps
.
Description
bitcmp(x)
computes the binary complement of each element of
x
, and provides it in the corresponding element of y
.
In the following description, 2^0 corresponds to the bit #1. An integer whose highest
bit on is #n, is in [2^(n-1), 2^n-1]
.
For x
such that abs(x) ≥ 2^bitnum
,
its bits #(bitnum+1)
to #(int(log2(x))+1)
are ignored. Only its bits #1
to #bitnum
are considered and inversed.
Example:
--> bitget(180, 1:8) ans = 0. 0. 1. 0. 1. 1. 0. 1. --> bitcmp(180, 4) ans = 11. --> bitget(11, 1:8) ans = 1. 1. 0. 1. 0. 0. 0. 0.
For x
such that abs(x) < 2^bitnum
,
bits #(int(log2(x))+2)
to #bitnum
are padded
with 0. Then all bits #1
to #bitnum
are considered
and inversed.
Example:
--> x = 30; int(log2(30))+2 ans = 6. --> bitget(30, 1:10) ans = 0. 1. 1. 1. 1. 0. 0. 0. 0. 0. --> bitcmp(30, 7) ans = 97. --> bitget(97, 1:10) ans = 1. 0. 0. 0. 0. 1. 1. 0. 0. 0.
Examples
--> b = bitget(x, 1:8) b = 1 0 1 1 0 0 0 0 --> c = bitcmp(x, 8) c = 242 --> bitget(c, 1:8) ans = 0 1 0 0 1 1 1 1 --> 1 - b ans = 0 1 0 0 1 1 1 1
Negative encoded integers are accepted:
bitcmp(int8([-71 -34 -1 0 33 70])) bitcmp(int8([-71 -34 -1 0 33 70]), 8) bitcmp(int8([-71 -34 -1 0 33 70]), 7) bitcmp(int8([-71 -34 -1 0 33 70]), 6) bitcmp(int8([-71 -34 -1 0 33 70]), 5) bitcmp(int8([-71 -34 -1 0 33 70]), 4)
--> bitcmp(int8([-71 -34 -1 0 33 70])) ans = 70 33 0 -1 -34 -71 --> bitcmp(int8([-71 -34 -1 0 33 70]), 8) ans = 70 33 0 -1 -34 -71 --> bitcmp(int8([-71 -34 -1 0 33 70]), 7) ans = 70 33 0 127 94 57 --> bitcmp(int8([-71 -34 -1 0 33 70]), 6) ans = 6 33 0 63 30 57 --> bitcmp(int8([-71 -34 -1 0 33 70]), 5) ans = 6 1 0 31 30 25 --> bitcmp(int8([-71 -34 -1 0 33 70]), 4) ans = 6 1 0 15 14 9
We can work with 64-bit big integers:
b = (rand(1,62)<0.5)*1; x = sum(b .* (uint64(2).^(0:61))) r = bitcmp(x) bg = bitget(r, 1:62); [msprintf("%d ",b(:)) ; msprintf("%d ",bg(:))]
--> x = sum(b .* (uint64(2).^(0:61))) x = 4154509482123930814 --> r = bitcmp(x) r = 14292234591585620801 --> bg = bitget(r, 1:62); --> [msprintf("%d ",b(:)) ; msprintf("%d ",bg(:))] ans = "0 1 1 1 1 1 0 1 0 0 1 1 0 1 0 0 ... 1 0 0 0 0 1 0 0 1 1 1 1 1 0 0 1 0 1 1 0 0 1 1 1 " "1 0 0 0 0 0 1 0 1 1 0 0 1 0 1 1 ... 0 1 1 1 1 0 1 1 0 0 0 0 0 1 1 0 1 0 0 1 1 0 0 0 "
bitnum can be an array:
bitcmp([0 0 0 0 0], 3:7)
--> bitcmp([0 0 0 0 0], 3:7) ans = 7. 15. 31. 63. 127.
bitnum can be > 52:
--> bitcmp(2^70, 65) ans = 36893488147419095040. --> sum(2.^(13:64)) ans = 36893488147419095040.
Huge decimal numbers can be processed:
format(22) log2(1e100) r = bitcmp(1e100, 333) bitcmp(1e100) // bitnum = int(log2(x)) + 1 is used by default bitcmp(r, 333)
--> log2(1e100) ans = 332.19280948873625903 --> r = bitcmp(1e100, 333) r = 7.498005798264093D+99 --> bitcmp(1e100) // bitnum = int(log2(x)) + 1 is used by default ans = 7.498005798264093D+99 --> bitcmp(r, 333) ans = 1.00000000000000D+100
See Also
History
Versão | Descrição |
6.1.1 |
|
Report an issue | ||
<< bitand | Bitwise operations | bitget >> |