Please note that the recommended version of Scilab is 2025.0.0. This page might be outdated.
See the recommended documentation of this function
penlaur
Laurent coefficients of matrix pencil
Syntax
[Si,Pi,Di,order]=penlaur(Fs) [Si,Pi,Di,order]=penlaur(E,A)
Arguments
- Fs
a regular pencil
s*E-A
- E, A
two real square matrices
- Si,Pi,Di
three real square matrices
- order
integer
Description
penlaur
computes the first Laurent coefficients of (s*E-A)^-1
at
infinity.
(s*E-A)^-1 = ... + Si/s - Pi - s*Di + ...
at s
= infinity.
order
= order of the singularity (order=index-1).
The matrix pencil Fs=s*E-A
should be invertible.
For a index-zero pencil, Pi, Di,...
are zero and Si=inv(E)
.
For a index-one pencil (order=0),Di
=0.
For higher-index pencils, the terms -s^2 Di(2), -s^3 Di(3),...
are given by:
Di(2)=Di*A*Di
, Di(3)=Di*A*Di*A*Di
(up
to Di(order)
).
Remark
Experimental version: troubles when bad conditioning of so*E-A
Examples
See also
Report an issue | ||
<< pencan | Faisceau de matrices | quaskro >> |