Scilab Website | Contribute with GitLab | Mailing list archives | ATOMS toolboxes
Scilab Online Help
6.1.1 - Français

Change language to:
English - 日本語 - Português - Русский

Please note that the recommended version of Scilab is 2025.0.0. This page might be outdated.
See the recommended documentation of this function

Aide de Scilab >> Systèmes de Contrôle - CACSD > Factorisation de Systèmes Linéaires > copfac

copfac

right coprime factorization of continuous time dynamical systems

Syntax

[N, M, XT, YT] = copfac(G)
[N, M, XT, YT] = copfac(G, polf, polc, tol)

Arguments

G

a continuous-time linear dynamical system.

polf, polc

respectively the poles of XT and YT and the poles of n and M (default values =-1).

tol

real threshold for detecting stable poles (default value 100*%eps)

N,M,XT,YT

continuous-time linear dynamical systems.

Description

[N,M,XT,YT]=copfac(G,[polf,polc,[tol]]) returns a right coprime factorization of G.

G= N*M^-1 where N and M are stable, proper and right coprime. (i.e. [N M] left-invertible with stability)

XT and YT satisfy:

[XT -YT].[M N]' = eye (Bezout identity)

G is assumed stabilizable and detectable.

See also

  • syslin — définition d'un système dynamique linéaire
  • lcf — Continuous time dynamical systems normalized coprime factorization

History

VersionDescription
5.4.0 Sl is now checked for continuous time linear dynamical system. This modification has been introduced by this commit
Report an issue
<< colinout Factorisation de Systèmes Linéaires dcf >>

Copyright (c) 2022-2024 (Dassault Systèmes)
Copyright (c) 2017-2022 (ESI Group)
Copyright (c) 2011-2017 (Scilab Enterprises)
Copyright (c) 1989-2012 (INRIA)
Copyright (c) 1989-2007 (ENPC)
with contributors
Last updated:
Mon Jan 03 14:33:06 CET 2022