Scilab Website | Contribute with GitLab | Mailing list archives | ATOMS toolboxes
Scilab Online Help
6.1.1 - English

Change language to:
Français - 日本語 - Português - Русский

Please note that the recommended version of Scilab is 2025.0.0. This page might be outdated.
See the recommended documentation of this function

Scilab Help >> Polynomials > lcmdiag

lcmdiag

least common multiple diagonal factorization

Syntax

[N,D] = lcmdiag(H)
[N,D] = lcmdiag(H, 'row')
[N,D] = lcmdiag(H, 'col')

Arguments

H

rational matrix

N

polynomial matrix

D

diagonal polynomial matrix

'row'|'col'

character string: Default is 'col'.

Description

[N,D]=lcmdiag(H,'row') computes a factorization D*H=N, i.e. H=D^(-1)*N where D is a diagonal matrix with D(k,k)=lcm of kth row of H('den').

[N,D]=lcmdiag(H) or [N,D]=lcmdiag(H,'col) returns H=N*D^(-1) with diagonal D and D(k,k)=lcm of kth col of H('den')

Examples

s = poly(0,'s');
H = [1/s,(s+2)/s/(s+1)^2;1/(s^2*(s+2)),2/(s+2)];
[N,D] = lcmdiag(H);
N/D - H

See also

  • lcm — least common (positive) multiple of integers or of polynomials
  • gcd — Greatest (positive) Common Divisor
  • bezout — GCD of two polynomials or two integers, by the Bezout method
Report an issue
<< invr Polynomials ldiv >>

Copyright (c) 2022-2024 (Dassault Systèmes)
Copyright (c) 2017-2022 (ESI Group)
Copyright (c) 2011-2017 (Scilab Enterprises)
Copyright (c) 1989-2012 (INRIA)
Copyright (c) 1989-2007 (ENPC)
with contributors
Last updated:
Mon Jan 03 14:23:25 CET 2022