Change language to:
English - Français - Português - Русский

See the recommended documentation of this function

Scilabヘルプ >> Polynomials > diophant

# diophant

Solves the diophantine (Bezout) equation p1*x1 + p2*x2 = b

### Syntax

`[x1x2, err] = diophant(p1p2, b)`

### Arguments

p1p2, x1x2

Vectors of two numbers or polynomials `p1p2 = [p1 p2]` and `x1x2 = [x1 x2]`, with the same size and type (integers, numbers, polynomials).

When there is no solution, `x1x2 = []`

b

single number or polynomial

err

Single real number: error flag:

0 No error. There is an infinite number of solutions. `p1==0`, `p2==0`, while `b <> 0` : No solution. There is no solution. `err = ||coeff(b - int(b/g)*g)|| / ||coef(b)||` where `g = gcd(p1,p2)`.

### Description

`diophant` solves the bezout equation `p1*x1 + p2*x2 = b` for polynomials, encoded integers, or numbers.

If input arguments are encoded integers, only integer solutions are searched.

If input arguments are decimal numbers or constant polynomials, there is always an infinite number of solutions.

When there is an infinite number of solutions, only one [x1 x2] solution is returned.

### Examples

```[X, e] = diophant(int8([4, 7]), 5)          // int8([10 -5])
[X, e] = diophant(int16([1234 5321]), 543); // int16([30533 -2339])
sum(X .* [1234 5321])

s = %s;
p = (1+s)*(s-1) + (1-s^2)*s;
[X, e] = diophant([1+s ; 1-s^2], -1+s+s^2-s^3); // [-1+2*s-s^2 ; 0]
sum(X .* [1+s ; 1-s^2])```

No solution exists:

```s = %s;
[X, e] = diophant([0, 0], 1)
[X, e] = diophant([s^3, s^2], s)
[X, e] = diophant([1+s ; 1-s^2], 1-s+s^2)
[X, e] = diophant(int8([2 0]), int8(1))  // No integer solution```

An infinite number of solutions exists:

```[X, e] = diophant([4, 7], 5)      // [0 5/7]
s = %s;
[X, e] = diophant([0, 0]*s, 0)
[X, e] = diophant([0, 1]*s, 2*s)
[X, e] = diophant([0, s]*(1-s^2), s^2*(1-s^2))```