Please note that the recommended version of Scilab is 2025.0.0. This page might be outdated.
See the recommended documentation of this function
norm
norms of a vector or a matrix
Syntax
y = norm(x) y = norm(x, normType)
Arguments
- x
vector or matrix of real or complex numbers (full or sparse storage)
- normType
- For a matrix
x
: a number among1, 2, %inf, -%inf
, or a word among"inf"
(or"i"
) or"fro"
(or"f"
). - For a vector
x
: any number or%inf
,-%inf
; or a word"inf"
("i"
),"fro"
("f"
).
- For a matrix
- y
norm: single positive real number.
Description
For matrices
- norm(x)
or
norm(x,2)
is the largest singular value ofx
(max(svd(x))
).- norm(x,1)
The l_1 norm
x
(the largest column sum :max(sum(abs(x),'r'))
).- norm(x,'inf'),norm(x,%inf)
The infinity norm of
x
(the largest row sum :max(sum(abs(x),'c'))
).- norm(x,'fro')
Frobenius norm i.e.
sqrt(sum(diag(x'*x)))
.
For vectors
- norm(v,p)
The l_p norm
sum(abs(v(i))^p)^(1/p)
.- norm(v), norm(v,2)
The l_2 norm
- norm(v,'inf')
max(abs(v(i)))
.
Remark
norm([])
and norm([],p)
return 0.
norm(x)
and norm(x,p)
return NaN if x contains NaNs.
Examples
See also
Report an issue | ||
<< min | Matrix operations | or >> |