Scilab Website | Contribute with GitLab | Mailing list archives | ATOMS toolboxes
Scilab Online Help
6.1.0 - English

Change language to:
Français - 日本語 - Português - Русский

Please note that the recommended version of Scilab is 2025.0.0. This page might be outdated.
See the recommended documentation of this function

Scilab Help >> Elementary Functions > Matrix operations > norm

norm

norms of a vector or a matrix

Syntax

y = norm(x)
y = norm(x, normType)

Arguments

x

vector or matrix of real or complex numbers (full or sparse storage)

normType

  • For a matrix x: a number among 1, 2, %inf, -%inf, or a word among "inf" (or "i") or "fro" (or "f").
  • For a vector x: any number or %inf, -%inf; or a word "inf" ("i"), "fro" ("f").

Default value = 2.
y

norm: single positive real number.

Description

For matrices

norm(x)

or norm(x,2) is the largest singular value of x (max(svd(x))).

norm(x,1)

The l_1 norm x (the largest column sum : max(sum(abs(x),'r')) ).

norm(x,'inf'),norm(x,%inf)

The infinity norm of x (the largest row sum : max(sum(abs(x),'c')) ).

norm(x,'fro')

Frobenius norm i.e. sqrt(sum(diag(x'*x))).

For vectors

norm(v,p)

The l_p norm sum(abs(v(i))^p)^(1/p) .

norm(v), norm(v,2)

The l_2 norm

norm(v,'inf')

max(abs(v(i))).

Remark

norm([]) and norm([],p) return 0.

norm(x) and norm(x,p) return NaN if x contains NaNs.

Examples

A = [1,2,3];
norm(A,1)
norm(A,'inf')
A = [1,2;3,4]
max(svd(A)) - norm(A)

A = sparse([1 0 0 33 -1])
norm(A)

See also

  • h_norm — H-infinity norm
  • dhnorm — discrete H-infinity norm
  • h2norm — H2 norm of a continuous time proper dynamical system
  • abs — absolute value, magnitude
  • svd — singular value decomposition
Report an issue
<< min Matrix operations or >>

Copyright (c) 2022-2024 (Dassault Systèmes)
Copyright (c) 2017-2022 (ESI Group)
Copyright (c) 2011-2017 (Scilab Enterprises)
Copyright (c) 1989-2012 (INRIA)
Copyright (c) 1989-2007 (ENPC)
with contributors
Last updated:
Tue Feb 25 08:49:19 CET 2020