- Scilab Help
- Elementary Functions
- Bitwise operations
- Complex numbers
- Discrete mathematics
- Matrix generation
- Log - exp - power
- Floating point
- Radix conversions
- Integers
- Matrix - shaping
- Matrix operations
- Search and sort
- Set operations
- Trigonometry
- &, &&
- extraction
- ind2sub
- insertion
- isempty
- isequal
- modulo
- ndims
- |, ||
- size
- sub2ind

# insertion

partial variable assignation or modification

# assignation

partial variable assignation

### Syntax

x(i,j)=a x(i)=a l(i)=a l(k1)...(kn)(i)=a or l(list(k1,...,kn,i))=a l(k1)...(kn)(i,j)=a or l(list(k1,...,kn,list(i,j))=a

### Arguments

- x
matrix of any kind (constant, sparse, polynomial,...)

- l
list

- i,j
indices

- k1,...kn
indices with integer value

- a
new entry value

### Description

- MATRIX CASE
If

`x`

is a matrix the indices`i`

and`j`

, may be:- Real scalars or vectors or matrices
In this case the values given as indices should be positive and only their integer part are taken into account.

If

`a`

is a matrix with dimensions`(size(i,'*'),size(j,'*'))`

,`x(i,j)=a`

returns a new`x`

matrix such as`x(int(i(l)),int(j(k)))=a(l,k)`

for`l`

from 1 to`size(i,'*')`

and`k`

from 1 to`size(j,'*')`

, other initial entries of`x`

are unchanged.If

`a`

is a scalar`x(i,j)=a`

returns a new`x`

matrix such as`x(int(i(l)),int(j(k)))=a`

for`l`

from 1 to`size(i,'*')`

and`k`

from 1 to`size(j,'*')`

, other initial entries of`x`

are unchanged.If

`i`

or`j`

maximum value exceed corresponding`x`

matrix dimension, array`x`

is previously extended to the required dimensions with zeros entries for standard matrices, 0 length character string for string matrices and false values for boolean matrices.`x(i,j)=[]`

kills rows specified by`i`

if`j`

matches all columns of`x`

or kills columns specified by`j`

if`i`

matches all rows of`x`

. In other cases`x(i,j)=[]`

produce an error.`x(i)=a`

with an`a`

vector returns a new`x`

matrix such as`x(int(i(l)))=a(l)`

for`l`

from 1 to`size(i,'*')`

, other initial entries of`x`

are unchanged.`x(i)=a`

with an`a`

scalar returns a new`x`

matrix such as`x(int(i(l)))=a`

for`l`

from 1 to`size(i,'*')`

, other initial entries of`x`

are unchanged.If

`i`

maximum value exceed`size(x,1)`

,`x`

is previously extended to the required dimension with zeros entries for standard matrices, 0 length character string for string matrices and false values for boolean matrices.- if
`x`

is a 1x1matrix

`a`

may be a row (respectively a column) vector with dimension`size(i,'*')`

. Resulting`x`

matrix is a row (respectively a column) vector- if
`x`

is a rowvector

`a`

must be a row vector with dimension`size(i,'*')`

- if
`x`

is a columnvector

`a`

must be a column vector with dimension`size(i,'*')`

- if
`x`

is a generalmatrix

`a`

must be a row or column vector with dimension`size(i,'*')`

and`i`

maximum value cannot exceed`size(x,'*')`

.

`x(i)=[]`

kills entries specified by`i`

.

- The : symbol
The

`:`

symbol stands for "all elements".`x(i,:)=a`

is interpreted as`x(i,1:size(x,2))=a`

`x(:,j)=a`

is interpreted as`x(1:size(x,1),j)=a`

`x(:)=a`

returns in`x`

the`a`

matrix reshaped according to`x`

dimensions.`size(x,'*')`

must be equal to`size(a,'*')`

.

- Vectors of boolean
If an index (

`i`

or`j`

) is a vector of booleans it is interpreted as`find(i)`

or respectively`find(j)`

.- Polynomials
If an index (

`i`

or`j`

) is a vector of polynomials or implicit polynomial vector it is interpreted as`horner(i,m)`

or respectively`horner(j,n)`

where`m`

and`n`

are associated`x`

dimensions. Even if this feature works for all polynomials, it is recommended to use polynomials in`$`

for readability.

- LIST OR TLIST CASE
If they are present the

`ki`

give the path to a sub-list entry of`l`

data structure. They allow a recursive insertion without intermediate copies. The`l(k1)...(kn)(i)=a`

and`l(list(k1,...,kn,i)=a)`

instructions are interpreted as:`lk1 = l(k1)`

`.. = ..`

`lkn = lkn-1(kn)`

`lkn(i) = a`

`lkn-1(kn) = lkn`

`.. = ..`

`l(k1) = lk1`

And the

`l(k1)...(kn)(i,j)=a`

and`l(list(k1,...,kn,list(i,j))=a`

instructions are interpreted as:`lk1 = l(k1)`

`.. = ..`

`lkn = lkn-1(kn)`

`lkn(i,j) = a`

`lkn-1(kn) = lkn`

`.. = ..`

`l(k1)= lk1`

`i`

may be :a real non negative scalar (only its integer part is taken into account).

`l(0)=a`

adds an entry on the "left" of the list.`l(i)=a`

sets the`i`

entry of the list`l`

to`a`

. If`i>size(l)`

,`l`

is previously extended with zero length entries (undefined).`l(i)=null()`

deletes the`i`

th list entry.a polynomial. If

`i`

is a polynomial it is interpreted as`horner(i,m)`

where`m=size(l)`

. Even if this feature works for all polynomials, it is recommended to use polynomials in`$`

for readability.

`k1,..kn`

may be :real positive scalar.

a polynomial, interpreted as

`horner(ki,m)`

where`m`

is the corresponding sub-list size.a character string associated with a sub-list entry name.

### Remarks

For soft coded matrix types such as rational functions and state space linear systems, `x(i)`

syntax must not be used for vector entry insertion due to confusion with list entry insertion. `x(1,j)`

or `x(i,1)`

syntax must be used.

### Examples

// MATRIX CASE a=[1 2 3;4 5 6] a(1,2)=10 a([1 1],2)=[-1;-2] a(:,1)=[8;5] a(1,3:-1:1)=[77 44 99] a(1)=%s a(6)=%s+1 a(:)=1:6 a([%t %f],1)=33 a(1:2,$-1)=[2;4] a($:-1:1,1)=[8;7] a($)=123 a(1,%pi)=1 //equivalent to a(1,3)=1 // x='test' x([4 5])=['4','5'] // b=[1/%s,(%s+1)/(%s-1)] b(1,1)=0 b(1,$)=b(1,$)+1 b(2)=[1 2] // the numerator // LIST OR TLIST CASE l=list(1,'qwerw',%s) l(1)='Changed' l(0)='Added' l(%pi)=1 //equivalent to l(3)=1 l(6)=['one more';'added'] // // dts=list(1,tlist(['x';'a';'b'],10,[2 3])); dts(2).a=33 dts(2)('b')(1,2)=-100

### See also

- find — find indices of boolean vector or matrix true elements
- horner — polynomial/rational evaluation
- parentheses — ( ) left and right parenthesis
- extraction — matrix and list entry extraction

## Comments

Add a comment:Please login to comment this page.