Scilab Website | Contribute with GitLab | Mailing list archives | ATOMS toolboxes
Scilab Online Help
6.0.2 - Русский

Change language to:
English - Français - 日本語 - Português -

Please note that the recommended version of Scilab is 2025.0.0. This page might be outdated.
See the recommended documentation of this function

Справка Scilab >> Linear Algebra > Eigenvalue and Singular Value > spec

spec

eigenvalues of matrices and pencils

Syntax

evals=spec(A)
[R,diagevals]=spec(A)

evals=spec(A,B)
[alpha,beta]=spec(A,B)
[alpha,beta,Z]=spec(A,B)
[alpha,beta,Q,Z]=spec(A,B)

Arguments

A

real or complex square matrix

B

real or complex square matrix with same dimensions as A

evals

real or complex vector, the eigenvalues

diagevals

real or complex diagonal matrix (eigenvalues along the diagonal)

alpha

real or complex vector, al./be gives the eigenvalues

beta

real vector, al./be gives the eigenvalues

R

real or complex invertible square matrix, matrix right eigenvectors.

L

real or complex invertible square matrix, pencil left eigenvectors.

R

real or complex invertible square matrix, pencil right eigenvectors.

Description

evals=spec(A)

returns in vector evals the eigenvalues.

[R,diagevals] =spec(A)

returns in the diagonal matrix evals the eigenvalues and in R the right eigenvectors.

evals=spec(A,B)

returns the spectrum of the matrix pencil A - s B, i.e. the roots of the polynomial matrix s B - A.

[alpha,beta] = spec(A,B)

returns the spectrum of the matrix pencil A- s B ,i.e. the roots of the polynomial matrix A - s B .Generalized eigenvalues alpha and beta are so that the matrix A - alpha./beta B is a singular matrix. The eigenvalues are given by al./be and if beta(i) = 0 the ith eigenvalue is at infinity. (For B = eye(A), alpha./beta is spec(A)). It is usually represented as the pair (alpha,beta), as there is a reasonable interpretation for beta=0, and even for both being zero.

[alpha,beta,R] = spec(A,B)

returns in addition the matrix R of generalized right eigenvectors of the pencil.

[al,be,L,R] = spec(A,B)

returns in addition the matrix L and R of generalized left and right eigenvectors of the pencil.

[al,be,Z] = spec(A,E)

returns the matrix Z of right generalized eigen vectors.

[al,be,Q,Z] = spec(A,E)

returns the matrices Q and Z of right and left generalized eigen vectors.

For big full / sparse matrix, you can use the Arnoldi module.

References

Matrix eigenvalues computations are based on the Lapack routines

  • DGEEV and ZGEEV when the matrix are not symmetric,

  • DSYEV and ZHEEV when the matrix are symmetric.

A complex symmetric matrix has conjugate offdiagonal terms and real diagonal terms.

Pencil eigenvalues computations are based on the Lapack routines DGGEV and ZGGEV.

Real and complex matrices

It must be noticed that the type of the output variables, such as evals or R for example, is not necessarily the same as the type of the input matrices A and B. In the following paragraph, we analyse the type of the output variables in the case where one computes the eigenvalues and eigenvectors of one single matrix A.

  • Real A matrix

    • Symmetric

      The eigenvalues and the eigenvectors are real.

    • Not symmetric

      The eigenvalues and eigenvectors are complex.

  • Complex A matrix

    • Symmetric

      The eigenvalues are real but the eigenvectors are complex.

    • Not symmetric

      The eigenvalues and the eigenvectors are complex.

Examples

// MATRIX EIGENVALUES
A=diag([1,2,3]);
X=rand(3,3);
A=inv(X)*A*X;
spec(A)

x=poly(0,'x');
pol=det(x*eye(3,3)-A)
roots(pol)

[S,X]=bdiag(A);
clean(inv(X)*A*X)

// PENCIL EIGENVALUES
A=rand(3,3);
[al,be,R] = spec(A,eye(A));
al./be
clean(inv(R)*A*R)  //displaying the eigenvalues (generic matrix)
A=A+%i*rand(A);
E=rand(A);
roots(det(A-%s*E))   //complex case

See also

  • poly — Определение полинома через указанные корни или коэффициенты или определение характеристического полинома квадратной матрицы.
  • det — determinant
  • schur — [ordered] Schur decomposition of matrix and pencils
  • bdiag — block diagonalization, generalized eigenvectors
  • colcomp — column compression, kernel, nullspace
  • dsaupd — Interface for the Implicitly Restarted Arnoldi Iteration, to compute approximations to a few eigenpairs of a real and symmetric linear operator This function is obsolete. Please use eigs
  • dnaupd — Interface for the Implicitly Restarted Arnoldi Iteration, to compute approximations to a few eigenpairs of a real linear operator This function is obsolete. Please use eigs
Report an issue
<< schur Eigenvalue and Singular Value sva >>

Copyright (c) 2022-2024 (Dassault Systèmes)
Copyright (c) 2017-2022 (ESI Group)
Copyright (c) 2011-2017 (Scilab Enterprises)
Copyright (c) 1989-2012 (INRIA)
Copyright (c) 1989-2007 (ENPC)
with contributors
Last updated:
Thu Feb 14 15:04:55 CET 2019