Scilab Home page | Wiki | Bug tracker | Forge | Mailing list archives | ATOMS | File exchange
Change language to: English - Français - 日本語 - Русский
Ajuda do Scilab >> Polinômios > poly

poly

Polynomial definition from given roots or coefficients, or characteristic to a square matrix.

Syntax

p = poly(vec, vname)
p = poly(vec, vname, "roots"|"coeff")
Pc = poly(matNN, vname)

Arguments

vname

a string: the symbolic variable name of the polynomial. Allowed characters are the same as for variables names (see naming rules).

vec

scalar, vector, or non-square matrix of real or complex numbers.

flag "roots" (default) | "coeff" (or "r" | "c")

Indicates what numbers in vec represent. "roots" is the default value.

Shortcuts can be used: "r" for "roots", and "c" for "coeff".

p

Polynomial with given roots or coefficients and symbolic variable name.

matNN

Square matrix of real or complex numbers.

Pc

Characteristic polynomial of the given square matrix, = det(x*eye() - matNN), with the symbolic variable x = poly(0,vname).

Description

When a vector or non-square matrix vec is provided,
• p = poly(vec, "x", "roots") or p = poly(vec, "x") is the polynomial whose roots are the vec components, and "x" is the name of its variable. degree(p)==length(vec) poly() and roots() are then inverse functions of each other. Infinite roots give null highest degree coefficients. In this case, the actual degree of p is smaller than length(vec). For instance, poly([-%inf -1 2 %inf ], "x") yields (x-2)(x+1) whose degree is 2.

The simple expression x=poly(0,"x") defines the elementary p(x)=x, which then can be used with usual operators +, -, *, / and simple functions like sum(). Scilab provides 3 predefined elementary polynomials %s, %z, and \$. The last one is mainly used as symbolic value of last index (of a range).

• poly(vec, "x", "coeff") builds the polynomial with symbol "x" whose coefficients in order of increasing degree are vec components (vec(1) is the constant term of the polynomial). Null high order coefficients (appended to vec) are ignored. Conversely, coeff(p) returns the coefficients of a given polynomial.
When a square matrix matNN is provided,

poly(matNN, vname) returns its characteristic polynomial of symbolic variable vname, i.e. p is set to det(x*eye() - matNN), with x = poly(0,vname).

Examples

Building a polynomial of given coefficients:

// Direct building:
x = poly(0, "x");
p = 1 - x + 2*x^3

// With poly():
p2 = poly([1 -1 0 2], "x", "coeff")

// With null high order coefficients
p3 = poly([2 0 -3 zeros(1,8)], "y", "coeff")
--> p = 1 - x + 2*x^3
p  =
3
1 -x +2x

--> p2 = poly([1 -1 0 2], "x", "coeff")
p2  =
3
1 -x +2x

--> p3 = poly([2 0 -3 zeros(1,8)], "y", "coeff")
p3  =
2
2 -3y

Building a polynomial of given roots:

// Direct building:
x = poly(0,"x");
p = (1-x)^2 * (2+x)

// With poly():
p2 = poly([1 1 -2], "x")

// With infinite roots
p3 = poly([%inf -1 2 %inf -%inf], "x")
--> p = (1-x)^2 * (2+x)
p  =
3
2 -3x +x

--> p2 = poly([1 1 -2], "x")
p2  =
3
2 -3x +x

--> p3 = poly([%inf -1 2 %inf -%inf], "x")
p3  =
2
-2 -x +x

Characteristic polynomial of a square matrix:

A = [1 2 ; 3 -4]
poly(A, "x")
--> A = [1 2 ; 3 -4]
A  =
1.   2.
3.  -4.

--> poly(A, "x")
ans  =
2
-10 +3x +x

• inv_coeff — constrói uma matriz de polinômios a partir de seus coeficientes
• coeff — coeficientes de matrizes de polinômios
• roots — raízes de polinômios
• varn — variável simbólica de polinômios ou de frações racionais
• horner — avaliação polinomial/racional
• %s — A variable used to define polynomials.
• %z — A variable used to define polynomials.
• rational — razão de polinômios
• rlist — definição de função racional do Scilab

History

 Versão Descrição 5.5.0 The only values allowed for the third argument are "roots", "coeff", "c" and "r". 6.0.0 The name of the symbolic variable is no longer limited to 4 characters. It can include some extended UTF-8 characters. 6.0.2 With the "coeff" method, null high order coefficients are now ignored.