Scilab Website | Contribute with GitLab | Mailing list archives | ATOMS toolboxes
Scilab Online Help
6.0.2 - English

Change language to:
Français - 日本語 - Português - Русский

Please note that the recommended version of Scilab is 2025.0.0. This page might be outdated.
See the recommended documentation of this function

Scilab Help >> Control Systems - CACSD > Control Design > Control Loop > feedback

feedback

feedback operation

Syntax

Sl=Sl1/.Sl2

Arguments

Sl1,Sl2

linear systems (syslin list) in state-space or transfer form, or ordinary gain matrices.

Sl

linear system (syslin list) in state-space or transfer form

Description

The feedback operation is denoted by /. (slashdot). This command returns Sl=Sl1*(I+Sl2*Sl1)^-1, i.e the (negative) feedback of Sl1 and Sl2. Sl is the transfer v -> y for y = Sl1 u, u = v - Sl2 y.

The result is the same as Sl=LFT([0,I;I,-Sl2],Sl1).

Caution: do not use with decimal point (e.g. 1/.1 is ambiguous!)

Examples

S1=ssrand(2,2,3);S2=ssrand(2,2,2);
W=S1/.S2;
ss2tf(S1/.S2)
//Same operation by LFT:
ss2tf(lft([zeros(2,2),eye(2,2);eye(2,2),-S2],S1))
//Other approach: with constant feedback
BigS=sysdiag(S1,S2); F=[zeros(2,2),eye(2,2);-eye(2,2),zeros(2,2)];
Bigclosed=BigS/.F;
W1=Bigclosed(1:2,1:2);   //W1=W (in state-space).
ss2tf(W1)
//Inverting
ss2tf(S1*inv(eye()+S2*S1))

See also

  • lft — linear fractional transformation
  • sysdiag — Create a block diagonal matrix from provided inputs or block diagonal system connection
  • augment — augmented plant
  • obscont — observer based controller
Report an issue
<< augment Control Loop lft >>

Copyright (c) 2022-2024 (Dassault Systèmes)
Copyright (c) 2017-2022 (ESI Group)
Copyright (c) 2011-2017 (Scilab Enterprises)
Copyright (c) 1989-2012 (INRIA)
Copyright (c) 1989-2007 (ENPC)
with contributors
Last updated:
Thu Feb 14 14:57:15 CET 2019