Change language to:
Français - 日本語 - Português - Русский

See the recommended documentation of this function

Scilab Help >> Control Systems - CACSD > Identification > time_id

# time_id

SISO least square identification

### Syntax

`[H [,err]]=time_id(n,u,y)`

### Arguments

n

order of transfer

u

one of the following

u1

a vector of inputs to the system

"impuls"

if y is an impulse response

"step"

if y is a step response.

y

vector of response.

H

rational function with degree n denominator and degree n-1 numerator if y(1)==0 or rational function with degree n denominator and numerator if y(1)<>0.

err

`||y - impuls(H,npt)||^2`, where `impuls(H,npt)` are the `npt` first coefficients of impulse response of `H`

### Description

Identification of discrete time response. If `y` is strictly proper (`y(1)=0`) then `time_id` computes the least square solution of the linear equation: `Den*y-Num*u=0` with the constraint `coeff(Den,n):=1`. if `y(1)~=0` then the algorithm first computes the proper part solution and then add y(1) to the solution

### Examples

```z=poly(0,'z');
h=(1-2*z)/(z^2-0.5*z+5)
rep=[0;ldiv(h('num'),h('den'),20)]; //impulse response
H=time_id(2,'impuls',rep)
//  Same example with flts and u
u=zeros(1,20);u(1)=1;
rep=flts(u,tf2ss(h));        //impulse response
H=time_id(2,u,rep)
//  step response
u=ones(1,20);
rep=flts(u,tf2ss(h));     //step response.
H=time_id(2,'step',rep)
H=time_id(3,u,rep)    //with u as input and too high order required```