Please note that the recommended version of Scilab is 2025.0.0. This page might be outdated.
See the recommended documentation of this function
observer
observer design
Syntax
Obs=observer(Sys,J) [Obs,U,m]=observer(Sys [,flag,alfa])
Arguments
- Sys
syslin
list (linear system)- J
nx x ny constant matrix (output injection matrix)
- flag
character strings (
'pp'
or'st'
(default))- alfa
location of closed-loop poles (optional parameter, default=-1)
- Obs
linear system (
syslin
list), the observer- U
orthogonal matrix (see
dt_ility
)- m
integer (dimension of unstable unobservable (
st
) or unobservable (pp
) subspace)
Description
Obs=observer(Sys,J)
returns the observer
Obs=syslin(td,A+J*C,[B+J*D,-J],eye(A))
obtained from Sys
by a J
output injection. (td is the time domain of Sys
).
More generally, observer
returns in Obs
an observer for
the observable part of linear system
Sys
: dotx=A x + Bu, y=Cx + Du
represented by a syslin
list.
Sys
has nx
state variables, nu
inputs and ny
outputs.
Obs
is a linear system with matrices [Ao,Bo,Identity]
,
where Ao
is no x no
, Bo
is no x (nu+ny)
, Co
is
no x no
and no=nx-m
.
Input to Obs
is [u,y]
and output of Obs
is:
xhat=estimate of x modulo unobservable subsp. (case flag='pp'
)
or
xhat=estimate of x modulo unstable unobservable subsp. (case flag='st'
)
case flag='st'
:
z=H*x can be estimated with stable observer iff H*U(:,1:m)=0
and assignable poles of the observer are set to alfa(1),alfa(2),...
case flag='pp'
:
z=H*x can be estimated with given error spectrum iff H*U(:,1:m)=0
all poles of the observer are assigned and set to alfa(1),alfa(2),...
If H satisfies the constraint: H*U(:,1:m)=0
(ker(H) contains unobs-subsp.
of Sys) one has H*U=[0,H2] and the observer for
z=H*x is H2*Obs with H2=H*U(:,m+1:nx) i.e. Co, the C-matrix of the
observer for H*x, is Co=H2.
In the particular case where the pair (A,C)
of Sys
is
observable, one has m=0
and the linear system U*Obs
(resp.
H*U*Obs
) is an observer for x
(resp. Hx
).
The error spectrum is alpha(1),alpha(2),...,alpha(nx)
.
Examples
nx=5;nu=1;ny=1;un=3;us=2;Sys=ssrand(ny,nu,nx,list('dt',us,us,un)); //nx=5 states, nu=1 input, ny=1 output, //un=3 unobservable states, us=2 of them unstable. [Obs,U,m]=observer(Sys); //Stable observer (default) W=U';H=W(m+1:nx,:);[A,B,C,D]=abcd(Sys); //H*U=[0,eye(no,no)]; Sys2=ss2tf(syslin('c',A,B,H)) //Transfer u-->z Idu=eye(nu,nu);Sys3=ss2tf(H*U(:,m+1:$)*Obs*[Idu;Sys]) //Transfer u-->[u;y=Sys*u]-->Obs-->xhat-->HUxhat=zhat i.e. u-->output of Obs //this transfer must equal Sys2, the u-->z transfer (H2=eye). //Assume a Kalman model //dotx = A x + B u + G w // y = C x + D u + H w + v //with Eww' = QN, Evv' = RN, Ewv' = NN //To build a Kalman observer: //1-Form BigR = [G*QN*G' G*QN*H'+G*NN; // H*QN*G'+NN*G' H*QN*H'+RN]; //the covariance matrix of the noise vector [Gw;Hw+v] //2-Build the plant P21 : dotx = A x + B1 e ; y = C2 x + D21 e //with e a unit white noise. // [W,Wt]=fullrf(BigR); //B1=W(1:size(G,1),:);D21=W(($+1-size(C,1)):$,:); //C2=C; //P21=syslin('c',A,B1,C2,D21); //3-Compute the Kalman gain //L = lqe(P21); //4- Build an observer for the plant [A,B,C,D]; //Plant = syslin('c',A,B,C,D); //Obs = observer(Plant,L); //Test example: A=-diag(1:4); B=ones(4,1); C=B'; D= 0; G=2*B; H=-3; QN=2; RN=5; NN=0; BigR = [G*QN*G' G*QN*H'+G*NN; H*QN*G'+NN*G' H*QN*H'+RN]; [W,Wt]=fullrf(BigR); B1=W(1:size(G,1),:);D21=W(($+1-size(C,1)):$,:); C2=C; P21=syslin('c',A,B1,C2,D21); L = lqe(P21); Plant = syslin('c',A,B,C,D); Obs = observer(Plant,L); spec(Obs.A)
Report an issue | ||
<< obscont | Contrôlabilité Observabilité | obsv_mat >> |